

Human monitoring in Tanzania

Assessing exposure to dioxin-like compounds in Tanzanian mothers using DR CALUX®

Müller MHB^{1*}, Polder A¹, Behnisch P³, Lie E^{1,2}, Felzel E³, Manyilizu WB⁴, Mdegela RH⁴, Mokiti F⁵, Murtadha M⁵, Nonga HE⁴, Skaare JU⁶, Solhaug A⁶, Lyche JL¹

¹Norwegian University of Life Sciences, Campus Adamstuen, P.O. Box 8146 Dep, N- 0033 Oslo, Norway, ²Norwegian Institute for Water Research, Gaustadallèen 21, N-0349 Oslo, Norway, ³Biodetection Systems b.v., Science Park 406, 1098XH Amsterdam, the Netherlands ⁴Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania, ⁵Mount Meru Regional Referral Hospital, P.O. Box 3092, Arusha, Tanzania, ⁶Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway

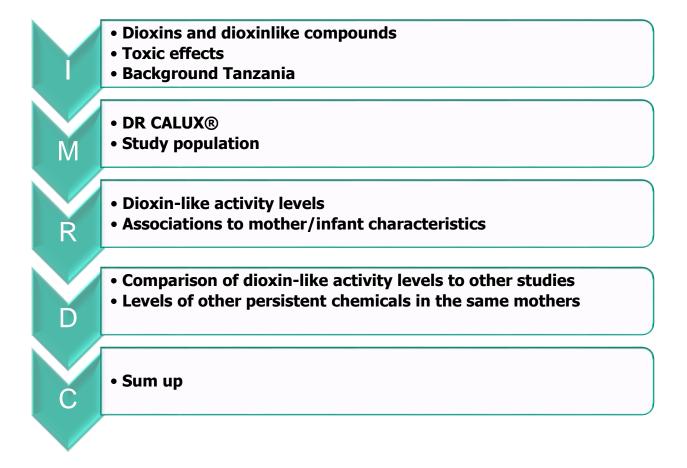
*Corresponding author: mette.helen.bjorge.muller@nmbu.no

9th Biodetector Conference 2016, Lausanne

Norwegian University of Life Sciences

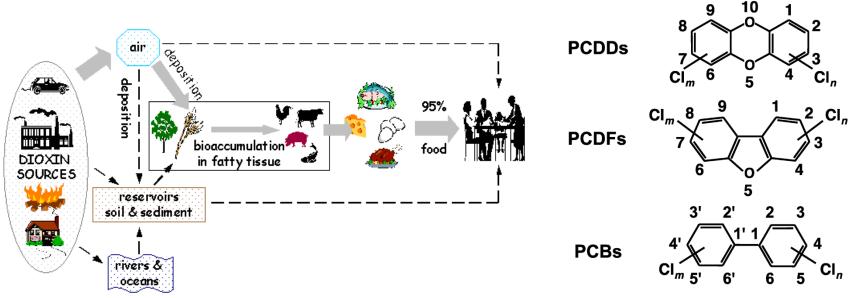
This study is part of project MORATANZ:

Monitoring and Risk Assessment of contaminants in Southern Africa - Arusha in Tanzania as a model


Financed by The Research Council of Norway project nr. 204051

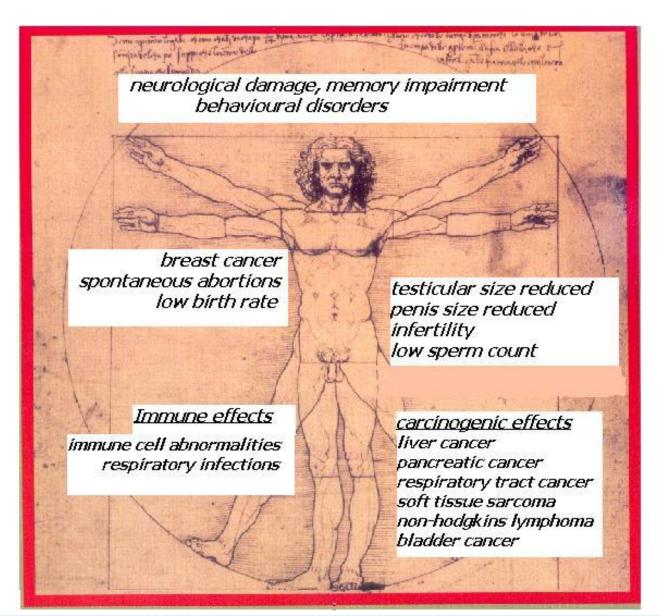
- Biodetection Systems (Peter Behnisch, Emiel Felzel)
- Anita Solhaug Veterinary Institute
- Participating mothers and hospital staff at Mount Meru Hospital, Arusha
- Partners in the project

Overview



Introduction

9th Biodetector Conference 2016, Lausanne



Dioxins and dioxin-like compounds

http://www.hearts.com/ecolife/choose-dioxinfree-life/

Introduction

Exposure to dioxin- like compounds in Tanzanian mothers using DR CALUX $\ensuremath{\mathbb{R}}$

Introduction

Tanzania

Agricultural

expansion

Urbanization

Importation of

Population growth

Limited municipal

waste treatment

Ratified Stockholm

consumer products

Industrialization

9th Biodetector Conference 2016, Lausanne

60 mill 50 mill 40 millio 30 millio 20 millio

Discharge of chemicals to the environment

Introduction

Potential sources to dioxins and dioxin-like compounds in Tanzania

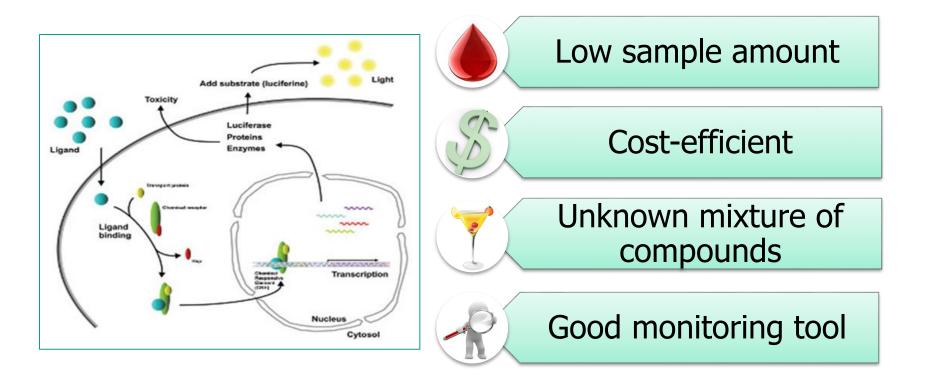
Waste management backyard burning industry, hospitals, domestic Cooking open fire inside the house Food eggs from free-range chickens Polder et al., 2016 Geophagy Pemba Reeuwijk et al., 2013 Obsolete stockpiles Vikuge Farm IPEN 2005

Mount Meru Regional Referral Hospital

150 mother-child couples

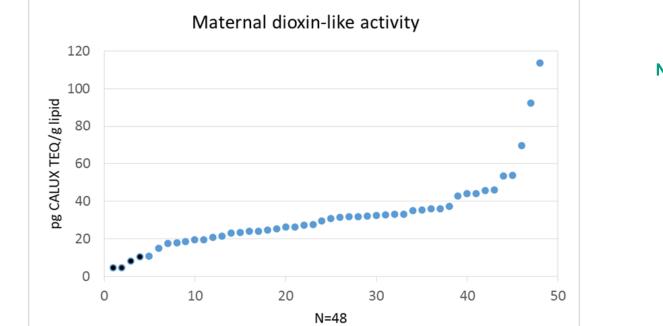
Maternal blood Cord blood Placenta Breast milk Meconium

Questionnaires


48 included in the present study

Materials & Methods

9th Biodetector Conference 2016, Lausanne



DR CALUX®

U

N= 48	pg TEQ/g plasma	pg TEQ/g lipid
LOQ	0,15	4,41
N (%) > LOQ	44 (92%)	44 (92%)
Mean	0,21	32,2
Median	0,19	30,2
Min	0,03	4,41
Max	0,64	114

Mother/infant characteristics

	Mean	Min	Max	
Age	22	19	30	
BMI (kg/m ²) before pregnancy	22,6	18,4	30,9	
Weight gain during pregnancy (kg)	6,6	2	17	
Gestational age (weeks)	38,5	36	40	
Birth weight (kg)	3,2	2,5	4,1	
Birth length (cm)	48,8	42	52	pid
Head circumference (cm)	34,7	33	37	logpg TEQ/g lipid
Lipid %	0,7	0,4	2,2	og TE
				log
	Number %			
Infant sex (male/female)	25/22	53/47		
Farming as occupation	21	45		
Other occupation than farming	26	55		
Rural residence	22	47		
Urban residence	25	53		
Live close to industrial activities	10	21		

Discussion

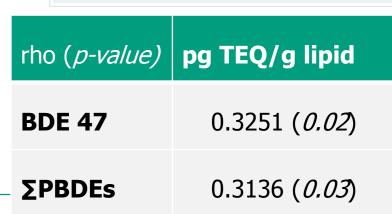
- Levels higher than USA and some Asian and European countries.....
- Industrial activities- increasing trend?....
- Waste disposal- no information....
- Dietary habits- interpret with caution....
- Geophagy during pregnancy....

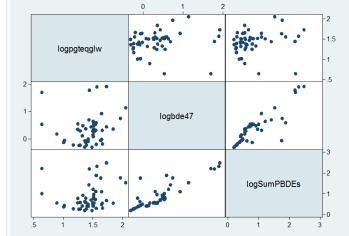
Country	Year	Ν	Mean*	Reference
Tanzania	2012	48	32,2	This study
Taiwan	2000	372	17	Chen et al., 2005
Korea	2001	22	21,5	Kim et al., 2005
USA	2001-02	1081	18,7	Ferriby et al., 2007
Germany	2000-03	169	28,4	Wittsiepe et al., 2007
France	2003	10	45,7	Pirard et al., 2005
Norway	2006-10	184	24,6	Vafeiadi et al., 2014
England	2006-10	111	26,0	Vafeiadi et al., 2014
Denmark	2006-10	190	45,7	Vafeiadi et al., 2014
Spain	2006-10	157	46,4	Vafeiadi et al., 2014
*pg TEQ/ g lipid				

In utero exposure of greater concern than postnatally through breast milk

Discussion

PBDEs in maternal blood




Example 5 Section 3.88 (range 1,59- 299 ng/g lipid)

BDE 47 median 1.95 (range 0,5-89,1 ng/g lipid)

- detection rate 65%
- > dominated in 40% of the samples
- ➤ contributed in average 37% to ∑PBDEs

Levels of BDE 47 and ∑PBDEs correlated to the levels of dioxin-like activity

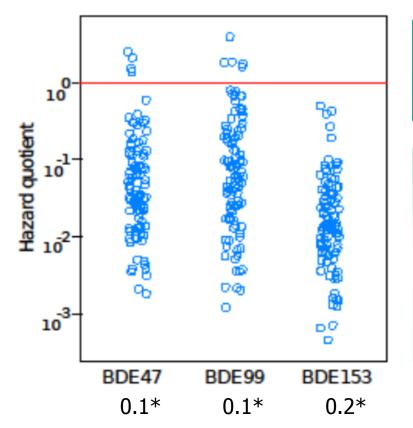
9th Biodetector Conference 2016, Lausanne

Discussion

BFRs and OCs in breast milk

ng/g lipid

N=95	% > LOD	Min	25 th	50 th	75 th	95 th	Max
Lipid %		0.20					14.0
НСВ	83	<lod< td=""><td>0.65</td><td>1.44</td><td>2.25</td><td>4.56</td><td>29.8</td></lod<>	0.65	1.44	2.25	4.56	29.8
ΣΗCΗ	88	<lod< td=""><td>0.44</td><td>1.11</td><td>2.25</td><td>13.4</td><td>24.5</td></lod<>	0.44	1.11	2.25	13.4	24.5
ΣCHL	56	<lod< td=""><td></td><td></td><td></td><td></td><td>12.9</td></lod<>					12.9
ΣEndosulfans	4	<lod< td=""><td></td><td></td><td></td><td></td><td>11.1</td></lod<>					11.1
ΣDDTs	100	26.3	95.7	205	619	1340	2486
Dieldrin	66	<lod< th=""><th>1.82</th><th>3.74</th><th>8.99</th><th>60.3</th><th>937</th></lod<>	1.82	3.74	8.99	60.3	937
Σ ₇ PCBs	89	<lod< td=""><td>2.48</td><td>4.19</td><td>8.38</td><td>29.0</td><td>157</td></lod<>	2.48	4.19	8.38	29.0	157
Σ ₇ PBDEs	100	<lod< td=""><td>7.2</td><td>19.8</td><td>45.5</td><td>307</td><td>785</td></lod<>	7.2	19.8	45.5	307	785


Müller et al. 2016; Müller et al. in prep.

Discussion

9th Biodetector Conference 2016, Lausanne

BFRs and OCs in breast milk

EDI exceeded RfD in 10% of the nursing infants

Estimated Daily Intake (EDI): C_{milk} x F x 700g/ 5

Reference Dose: estimate of a daily oral exposure to a toxic substance that is likely to be without an appreciable risk of harmful effects during a lifetime.

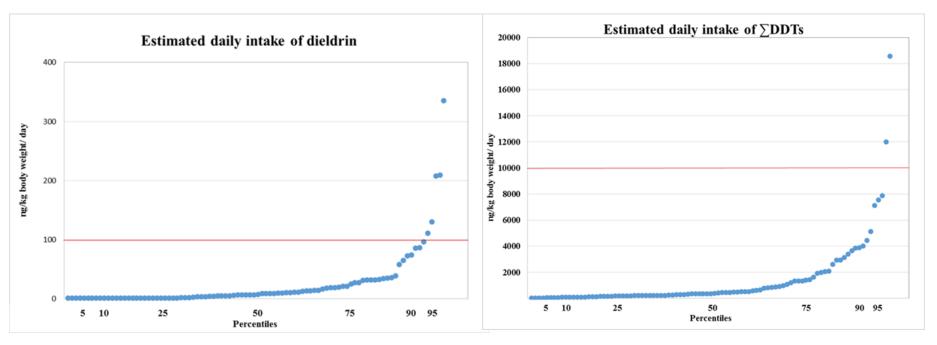
HQ: ratio between EDI and toxicological values. HQs exceeding 1 indicate a possible health risk.

Müller et al. 2016

*µg/kg/day US EPA RfD for neurodevelopmental toxicity

Discussion

9th Biodetector Conference 2016, Lausanne


BFRs and OCs in breast milk

EDI exceeds PTDI in 6 infants

PTDI dieldrin: 100 ng/kg bw/day FAO/WHO, 1995 EDI exceeds PTDI in 2 infants

PTDI DDT: 10 000 ng/kg bw/day FAO/WHO, 2001

Provisional Tolerable Daily Intake (PTDI)

Müller et al. in prep

- The compounds giving the dioxin-like activity?
- Chemical analysis for confirmation

Chlorinated versus brominated dioxins/furans/biphenyls

- additive effects in animal studies
- similar effects
- effects at similar low doses indicating comparable potencies
- limited *in vivo* and *in vitro* data for PBDDs, PBDFs, and non-ortho dl-PBBs

Conclusion

• DR CALUX:

Valuable tool for our monitoring purposes Use CALUX- TEQ in risk assessment?

- Confirmation of the dioxin-like compounds by chemical analysis
- Risk communication to increase Governmental efforts
- Nutritional guidance of women in child bearing age
- Further studies needed to assess
 - Sources
 - Potential health risks- especially for fetuses and nursing infants!

Behnisch PA, Hosoe K, Sakai S, 2003. *Brominated dioxin-like compounds: in vitro assessment in comparison to classical dioxin-like compounds and other polyaromatic compounds*. Environment International 29, 861-877

FAO/WHO. 1995. Report of the joint meeting of the FAO panel of experts on pesticide residues in food and the environment and a who expert group on pesticide residues. FAO plant production and protection paper, 127, 1995. <u>Http://www.Fao.Org/fileadmin/templates/agphome/documents/pests_pesticides/jmpr/reports_1991-2006/report1994.Pdf</u>.

FAO/WHO. 2001. Report of the joint meeting of the fao panel of experts on pesticide residues in food and the environment and the who core assessment group. FAO plant production and protection paper, 163, 2001. <u>Http://www.Fao.Org/fileadmin/templates/agphome/documents/pests_pesticides/jmpr/reports_1991-2006/report_2000.Pdf</u>.

Müller MHB, Polder A, Brynildsrud OB, Lie E, Løken KB, Manyilizu WB, et al. 2016. *Brominated flame retardants (bfrs) in breast milk and associated health risks to nursing infants in Northern Tanzania.* Environment International 89-90:38-47.

Polder A, Müller MHB, Brynildsrud OB, de Boer J, Hamers T, Kamstra JH, et al. 2016. *Dioxins, pcbs, chlorinated pesticides and brominated flame retardants in free-range chicken eggs from peri-urban areas in Arusha, Tanzania: Levels and implications for human health.* The Science of the Total Environment 551-552:656-667.

Reeuwijk, N. M.; Talidda, A.; Malisch, R.; Kotz, A.; Tritscher, A.; Fiedler, H.; Zeilmaker, M. J.; Kooijman, M.; Wienk, K. J.; Traag, W. A.; Hoogenboom, R. L., Dioxins (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-furans) in traditional clay products used during pregnancy. *Chemosphere* **2013**, *90*, (5), 1678-85.

US EPA IRIS (Integrated Risk Information System). <u>www.epa.gov/iris/subst/1008.htm</u>; <u>www.epa.gov/iris/subst/1010.htm</u>; <u>www.epa.gov/iris/subst/1010.htm</u>

