

Toxicity profiling and effect-based safety assessment of chemicals and chemical mixtures as present in plastic leachates

Bart van der Burg – BioDetection Systems BV Department of Innovation

bart.van.der.burg@bds.nl

Food packaging: safety concerns

Food packaging: safety concerns

- Compounds of concern:
- -> Bisphenol A
- -> Phthalates
- ... but there may be more!

Current legislation for food contact materials

 Known compounds: specific migration limits (SML) in mg/kg food Relevant examples:

	SML
Compound	(mg/kg food)
4-Cumylphenol	0.05
Benzophenone	0.6
Bisphenol A	0.6
Diisodecylphthalate	9
Butylbenzylphthalate	30

 Unknown compounds (NIAS): overall migration limit (OML) of 60mg/kg food or 10mg/dm2 food packaging material

Current situation: safety testing inadequate

- Leachates:
- a **complex mixture** of chemicals, metabolites and degradation products
- Current (chemical) analysis: based on monitoring known compounds
- Fails to detect **unknown** chemicals present in leachates: Threshold of Toxicological Concern approach, works only for relatively low potency compounds

Is this a problem?

Example: If a compound with the estrogenic potency of estradiol would leach into food at 60mg/kg food, this would equal >**300 Oral Contraceptive (OC) pills** per kg food!

	OC-equivalents
Compound	at 60mg/kg
17b-Estradiol	317
Zearalenone	16
4-n-amylphenol	3
Genistein	0.1
Bisphenol A	0.02
4-tert-octylphenol	0.02
4-cumylphenol	0.01
Daidzein	0.01
Bisphenol F	0.004

- No satisfactory risk assessment mixtures using chemical analytics
- TTC concept not suitable for high potency toxicants
- No reliable in silico methods for mixtures
- But.....bioassays do give valuable information!

To avoid occurence of unknown high potency toxicants bioassays can be used, e.g. for endocrine disrupting compounds, dioxins and genotoxic agents

The Eralpha CALUX limit of detection (LOD) is lower than the specific migration limits (SML) set for the following compounds:

	SML	ERa CALUX LOD	
Compound	(mg/kg food)	(mg/kg food)	
4-cumylphenol	0.05		0.01
Benzophenone	0.6		0.6
Bisphenol A	0.6		0.01
Diisodecylphthalate	9		9
Butylbenzylphthalate	30		0.05
17b-Estradiol	0.5/3.8E-06*	4.3	E-07

*trigger value for water (mg/L)

The Solution: effect-based monitoring

Chemical analysis: measuring the tip of the iceberg

 Effect-based monitoring: measuring all active chemicals, including "unknowns"

Pathway-based analysis for rapid hazard identification

Pathway-based analysis for rapid hazard identification

Hanahan and Weinberg 2011, Cell 144(5):646-74

- Cancer diagnosis: pathway analysis is increasingly used in complementing and replacing conventional pathology
- Toxicology is next in line

principle CALUX[®] pathway-based reporter gene assays

BI

specificity CALUX[®] pathway-based reporter gene assays

Legler et al (1999) Toxicological Sciences 48, 55-66.

overview CALUX[®] pathway-based reporter gene assays

name	basal line	species	pathway	reference compound	key reference
DR CALUX	H4IIE	rat	dioxin receptor activation	2,3,7,8-TCDD	Van Vugt 2013
PAH CALUX	H4IIE	rat	dioxin receptor activation	benzo-a-pyrene	Pieterse 2013
ER CALUX	T47D	human	estrogen receptor activation	17β-estradiol	Legler 1999
ERalpha CALUX	U2OS	human	estrogen receptor α activation	17β-estradiol	Sonneveld 2005 OECD 2013
antiERalpha CALUX	U2OS	human	repression estrogen receptor α activation	tamoxifen	Van der Burg 2010a, OECD 2013
ERbeta CALUX	U2OS	human	estrogen receptor $\boldsymbol{\beta}$ activation	17β-estradiol	Van der Burg 2013

- Sensitive quantitative assays for major hormonal systems and cell signalling pathways
- Adresses major types of toxicity (general toxicity, genotoxicity/carcinogenicity, endocrine disruption, reproduction, developmental tox., obesogens, etc)
- More than 50 assays
- Metabolism (S9, phase1 &2, steroidogenesis)
- Compatible with PBPK modeling
- Robust and specific: suitable for complex mixtures
- Data on ca 400 chemicals

ge	notox CALUX	U2OS	human	p53-dependent pathway activation +/-S9	cyclophosphamide	Van der Linden 2014
тс	F CALUX	U2OS	human	wnt/TCF pathway activation	lithium chloride	Piersma 2013, Van der Burg 2013
AP	1 CALUX	U2OS	human	AP1 pathway activation	ТРА	Piersma 2013, Van der Burg 2013
н	F1alpha CALUX	U2OS	human	Hif1alpha pathway activation	cobaltous chloride	Piersma 2013, Van der Burg 2013
ER	stress CALUX	U2OS	human	ERSE activation leading to endoplasmic reticulum stress	ading to endoplasmic reticulum stress tunicamycin	

Modular Approach ECVAM Test validity

1.Test definition		yes	-		
2. Within-laboratory variability		yes	-	>	
3. Transferability	Reproducibility	yes	VMG	>	Peer-
4. Between-laboratory variability		yes			by expert
5. Predictive capacity	Relevance	yes	-		panels
6. Applicability domain		yes	_	>	
7. Performance standards		yes			

Hartung T., Bremer S., Casati S., Coecke S., Corvi R., Fontaner S., Gribaldo L., Halder M., Hoffmann S., Janusch Roi A., Prietro P., Sabbioni E.,

Scott L., Worth A., Zuang V. A modular Approach to the ECVAM principles on Test validity. ATLA 32, 467-472, 2004

Validation: reproducibility/transferability

Intra/interlaboratory reproducibility: coefficient of variance of active test compounds (either agonistic or antagonistic) was *less than 4%*

Fit statistics EC50 ago 1 vs ago 2

	Lab A	Lab B	Lab D
slope	0.9843	0.9615	0.9921
y-intercept	-0.0717	-0.3493	-0.1422
R-square	0.996	0.992	0.964
	y=0.984x-0.0717	y=0.962x-0.3493	y=0.992x-0.1422

Validation analysis results: concordance of classification (ERa CALUX vs ICCVAM)

Agonism	Lab A	Lab B	Lab D	Antagonism	Lab A	Lab B	Lab D
Overall accuracy (%)	96	96	100	Overall accuracy (%)	100	100	100

BDS Can HTS pathway-based assays be used to predict toxicity?

compounds

Various validation studies: predictivity CALUX panel/subsets

Validation: what level of predictivity to expect?

Risk assessment of mixtures: extrapolation and interpretation

CANARY IN THE COAL MINE

- Adverse Outcome Pathway (AOP): chain of linked **key events** at different levels of biological organisation that lead to an **adverse outcome**.
- Central elements to support chemical risk assessment based on mechanistic reasoning.

Addresses the needs of various OECD programs:

- the OECD <u>Test Guidelines Programme</u> for the identification of candidate *in vitro* test methods to become OECD Test Guidelines;
- The OECD <u>QSAR Project</u> for the identification of profilers for grouping chemicals
- the OECD <u>Hazard Assessment activities</u> for the development of Integrated Approaches to Testing and Assessment (IATA; ITS) for defined hazard endpoints.

Example: reproductive toxicity, particularly endocrine disruption

i.e. disturbance of hormone balance by chemicals

Major concerns:

- Cancer
- Decreased fertility
- Obesity

OECD; conceptual framework with many tests

OECD Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals

Note: Document prepared by the Secretariat of the Test Guidelines Programme based on the agreement reached at the 6th Meeting of the EDTA Task Force

Level 1 Sorting & prioritization based upon existing information	 Physical & chemical properties, e.g., MW, reactivity, volatility, biodegradability Human & environmental exposure, e.g., production volume, release, use patterns Hazard, e.g., available toxicological data 					
Level 2 In vitro assays providing mechanistic data	 •ER, AR, TR receptor binding affinity •Transcriptional activation •Aromatase & Steroidogenesis <i>in vitro</i> •Aryl hydrocarbon receptor recognition/binding 	 High Through Put Prescreens Thyroid function Fish hepatocyte VTG assay QSARs; Others (as appropriate) 				
Level 3 In vivo assays providing data about single endocrine Mechanisms and effects	 Uterotrophic Assay (estrogenic related) Hershberger Assay (androgenic related) Non-receptor mediated hormone function 	 Fish VTG assay (estrogenic related) Others (e.g. thyroid) 				
Level 4 In vivo assays providing data about multiple endocrine mechanisms and effects	 Enhanced OECD 407 (endpoints based on endocrine mechanisms) Male and female pubertal assays Adult intact male assay 	 Fish gonadal histopathology assay Frog metamorphosis assay 				
Level 5 In vivo assays providing data on effects from endocrine & other mechanisms	•1-generation assay (TG415 enhanced) •2-generation assay (TG416 enhanced) •Reproductive screening (TG421 enhanced) •Combined 28 day/reproduction screening test (Partial and full life cycle assays in fish, birds, amphibians & invertebrates (development & reproduction) TG 422 enhanced)				

AOP example: adverse effects by estrogens

Becker et al., Regulatory Toxicology and Pharmacology , in press

Many estrogen target tissues

Chen

Adverse effects in rodents by estrogens

DES Target Effect **Bisphenol** A Methoxychloi Genistein Nystatin Raloxifene HCI3 Vonylpheno 7 -Nonylpheno learalenone [amoxifen2 -tert-Octylphenol **Br-bisphenol β-Estradio** pituitary hyperplasia pituitary weight increased endocrine system FSH

- No consistent way of analysis and classification of chemicals
- Adverse outcomes are in fact clustered adverse outcomes, such as "neural tube defects" or "sex organ deformities"

>No simple 1:1 correlation expected of in vitro/in vivo: clustering adverse outcomes needed?

access. sex. glan	ds male, weight decreased	Х		Х											
prostate	atrophy	х							х						
seminal vesicles	atrophy	х													
mating index	decreased	х											х		
fertility	decreased	х						х	х	x			х		
endocrine system	progesterone	х													
endocrine system	prolactin	х											x		
sexual maturation	PPS delayed	х		х		х		x			х	х			
sexual maturation	VO preterm	х					х	x	х				x		
adrenal glands	weight increased	х					x			х					
mammary glands	changes in organ structure	х													
mammary glands	dilatation	х													
mammary glands	hyperplasia	х							х						
mammary glands	tumour	х													
skin/subcutaneou	s ti: alopecia	х													
skin/subcutaneou	s ti: sebaceous gland atrophy	x													
ano	genital distance male, decreased		×												
ano	genital distance female, decreased		×							1			0045		
ano	genital distance female, increased		×	X						Lev	vin ei	t al	2015.		
	al maturation testicular descend delayed		×		x							,	,		
	enal glands weight decreased		×							Do	nrad	intive		viaal	
mar	nmary glands hypertrophy					x				Re	u uu	ισιν	e 10)	KICOI(JYV J
bon	e changes in organ structure						x			· ·					

Cher

- Chemical grouping non-informative, but biological grouping needed
- ✓ ER/AR balance clearly links to structural deformities in reproductive organs

Van der Burg et al. (2015) Reproductive Toxicology 55: 95-103 Lewin et al. (2015) Reproductive Toxicology 55:81-94

A level 2 test can predict an adverse outcome (level 5)

OECD Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals

Note: Document prepared by the Secretariat of the Test Guidelines Programme based on the agreement reached at the 6th Meeting of the EDTA Task Force

Level 1 Sorting & prioritization based upon existing information	 Physical & chemical properties, e.g., MW, reactivity, volatility, biodegradability Human & environmental exposure, e.g., production volume, release, use patterns Hazard, e.g., available toxicological data 					
Level 2 In vitro assays providing mechanistic data	•ER, AR, TR receptor binding affinity •Transcriptional activation •Aromatase & Steroidogenesis <i>in vitro</i> •Aryl hydrocarbon receptor recognition/binding	 High Through Put Prescreens Thyroid function Fish hepatocyte VTG assay QSARs; Others (as appropriate) 				
Level 3 <i>In vivo</i> assays providing data about single endocrine Mechanisms and effects	 Uterotrophic Assay (estrogenic related) Hershberger Assay (androgenic related) Non-receptor mediated hormone function 	 Fish VTG assay (estrogenic related) Others (e.g. thyroid) 				
Level 4 In vivo assays providing data about multiple endocrine mechanisms and effects	 Enhanced OECD 407 (endpoints based on endocrine mechanisms) Male and female pubertal assays Adult intact male assay 	 Fish gonadal histopathology assay Frog metamorphosis assay 				
Level 5 In vivo assays providing data on effects from endocrine & other mechanisms	 1-generation assay (TG415 enhanced) 2-generation assay (TG416 enhanced) Reproductive screening (TG421 enhanced) Combined 28 day/reproduction screening test (Partial and full life cycle assays in fish birds, amphibians & invertebrates (development & reproduction) TG 422 enhanced)				

Many more HTS assays needed to predict estrogenicity?

- Toxcast: many assays per pathway (18 assays)
- Our approach: One selective, validated assay with minimal false positives (ERalpha CALUX)

	1 CA	18 TOXC	REFERE
	LUX	AST	NCE
17alpha-Ethinylestradiol	-12,30	1,00	6
meso-Hexestrol	-11,70	0,99	6
17beta-Estradiol	-11,50	0,94	6
Diethylstilbestrol	-11,20	0,94	6
17alpha-Estradiol	-9,80	1,06	4
Estrone	-9,50	0,81	4
4-Octylphenol	-6,20	0,12	4
Genistein	-8,00	0,54	2
5alpha-Dihydrotestosterone	-7,50	0,40	2
Bisphenol A	-7,30	0,45	2
4-Cumylphenol	-7,00	0,38	2
o,p'-DDT	-6,90	0,39	2
Kepone	-6,60	0,17	2
Butyl benzyl phthalate	-6,40	0,18	1
Methoxychlor	-6,20	0,25	1
Kaempferol	-6,10	0,25	1
17-Methyltestosterone	-6,00	0,50	1
Fenarimol	-5,70	0,11	1
Ethylparaben	-5,40	0,09	1
p,p'-DDE	-5,30	0,07	1
Dicofol	-5,30	0,00	1
Dibutyl phthalate	-5,20	0,03	1
4-Nonylphenol	-5,10	0,09	1
Di(2-ethylhexyl) phthalate	-4,00	0,00	1
Atrazine	-4,50	0,00	0
Haloperidol	0,00	0,01	0
Spironolactone	0,00	0,00	0
Corticosterone	0,00	0,00	0
Flutamide	0,00	0,00	0
Procymidone	0,00	0,00	0
Linuron	0,00	0,00	0
Reserpine	0,00	0,00	0
Ketoconazole	0,00	0,00	0

Can a test battery predict animal tests results?

Schenk et al. 2010 Reproductive Toxicology 30, 200-218; Piersma et al. 2013. Reproductive Toxicology

Battery performance

compound	Toxicity in vivo	EST	ZET	ReProGl o	Cyp17	Cyp19	CALUX	CALUX PBPK	battery
Cyclosporin A									
Monoethylhexyl phthalate									
Sodium valproate									
D-mannitol									
Flusilazole									
Glufosinate ammonium									
Methoxy acetic acid									
Retinoic acid									
Dioctyltin chloride									
Endosulfan									
Diethylstilbestrol									
Methylmercury chloride									

✓ CALUX HTS model same prediction as complex tests (EST/ZET)

Chem Creen

Piersma et al. 2013 Reproductive Toxicology 38, 53

Modular metabolism methods

Thresholds/trigger values

- Guideline limit values for bioassays, if available
- Guideline limit values chemicals: convert to bioassay threshold (underestimation)
- Risk assessment using reference chemicals; trigger values Brand et al (water)
- Bioassay-based: Biological pathway altering dose/epidemiological data showing effect in humans correlated to bioassay activation level
- Etc.

	ADI/TDI reference (µg/kg bw/day)a	Safety factor ADI/TDIa	Bioavailability reference	fup reference	Bioavailability other	fup other compounds	External equivalent dose	Trigger value
ERα	0.050 (E2)	100	5%	2%	50%	16%	0.625 ng E2-eq/kg bw/day	3.8 ng E2-eq/L
AR	2 (T)	1000	3.5%	2%	50%	23%	12.17 ng T-eq/kg bw/day = 1.826 ng DHT-eq/kg bw/day	11 ng DHT-eq/L
GR	0.015 (DEX)	100	70%	23%	100%	70%	3.450 ng DEX-eq/kg bw/day	21 ng DEX-eq/L
PR	30 (P4)	100	10%	2.5%	100%	10%	750 ng P4-eq/kg bw/day = 55.5 ng Org2058-eq/kg bw/day	333 ng Org2058-eq/L

Specificity allows to measure exposure in humans

Pathway specific bioassays are valuable for human monitoring

E.g. associations between DR-CALUX responses and:

- markers of childhood leukemia
- Iow birth weight
- shorter gestational time
- changes in AGD in young boys
- immune system functions later in life
- Derivation of thresholds /"trigger values" possible

Mixtures:

Estrogenicity detected in Leachates

Food simulant 1: 20% EtOH (water, low alcohol-beverages)

	Estradiol equivalents
Sample	(mg/kg food simulant)
РЕТ	< 4.3 E-07
Polypropylene	< 4.3 E-07
HD polyethylene	< 4.3 E-07
LD polyethylene	< 4.3 E-07

Food simulant 2: 50% EtOH (fruit juice, high alcohol-beverages, milk/cream/cheese)

Sample	Estradiol equivalents (mg/kg food simulant)
PET	< 4.3 E-07
Polypropylene	< 4.3 E-07
HD polyethylene	1.3 E-05
LD polyethylene	1.3 E-05

For HD- and LDPE, the detected estrogenic equivalents in mg/kg food are 3.5x higher than the trigger value in water

Biobased plastics: a safer alternative?

Not necessarily:

- 'Drop-in plastics': chemically identical to petrochemical counterparts... their toxicity profile will likely also be the same
- Biobased plastics will need similar additives...
 (plasticizers, UV/thermo-stabilizers, coatings, colorants)
- Biomass used to generate biobased plastics may vary in quality... toxicity profile of the resulting plastics may vary accordingly

CALUX profile of plastic additives

activity ·

compound	Cytotox10%	ERa	ERa+S9	ERa-anti	ERb	ERb-anti	ĄR	AR-anti	PR	PR-anti	GR	GR-anti	FRb	RAR	LXR	PXR	PPARa	PPARg	DR	РАН	Hif1a	Г C₽	ĄР1	ESRE	NFkB	NH2	p21	53 GENTOX	53 S9 GENTO
Di(2-ethylhexyl)phthalate		-4.0								-5.2						-6.4													~
Di-n-octyl phthalate																													
monoethylhexyl phtalate	-3.5																-5.5												
diisodecylphthalate		-4.4																											
diisononylphthalate																												-3.0	
Dicyclohexylphthalate	-4.5	-5.3								-5.4		-5.1				-6.7													
Diethylphthalate	-3.5	-4.3						-5.0		-4.3																			
Diisobutyl phthalate	-4.0	-5.7						-5.3		-5.5																			
Dibutylphthalate	-4.5	-5.2						-5.5		-5.5																			
Di(n-hexyl)phthalate	-3.5	-5.0						-5.0		-5.5									-4.0										
Butyl benzyl phthalate	-3.9	-6.4						-5.6		-5.5									-3.7										
di(2-ethylhexyl)adipate																													
Benzophenone	-3.5	-5.2						-6.0																					
Etyl paraben	-3.0	-5.2			-5.2			-5.0		-4.0																		-3.5	
4-tert-octylphenol	-5.5	-7.2			-8.5			-6.4		-6.1						-6.0													
4-n-octylphenol	-4.7	-6.2						-5.6		-5.3																			
Nonylphenol	-4.9	-5.1			-5.6			-6.5		-5.5																			
4-Cumylphenol	-4.2	-7.0	-6.4		-7.0			-6.7		-6.1																			
p-(tert-pentyl)phenol	-4.0	-7.7						-6.3		-5.9																			
Diphenyl-p-phenylenediamine	-4.0	-5.5						-5.2		-5.4																			
Bisphenol A	-4.0	-7.3			-6.8			-6.8		-5.5																			
Bisphenol A-dimethacrylate		-6.6			-6.5			-6.0		-5.5						-5.3												-4.7	
Bisphenol F		-6.6			-6.7			-5.4																					
																													٦

• Most additives are active on the endocrine assays:

they act as estrogens, anti-androgens and anti-progestins

First applications in read across, safe design/green chemical identification

- Case study: CALUX panel identifies FDCA as a potentially non-toxic alternative to current plastic ingredients/building blocks
- Cases that show applicability to different chemical classess
- Comparable "read-across" methods are increasingly used in chemical safety assessments; used in approx. 30% reproductive tox dossiers (100-1000TPA) in REACH (ECHA 2014)

Kroese et al., 2015 reproductive toxicology 55; Van Vugt-Lussenburg, in preparation

BDS

Conventional vs Biobased plastic building blocks

Novel Biobased furan-ester plastic additives Currently used phthalate-based analogues												activity - +										
compound	Cytotox20%	ERa	ERa+S9	ERb	AR-anti	PR-anti	GR-anti	TRb-anti	PPARa	PPARg	DR	AP1	ESRE	NH2	p53 GENTOX	p53 S9 GENTOX						
DEHF DEHP		-3.9																				
DIBF DIBP		-4.3 -5.7	-4.0		-5.6	-5.7																
DIDF DIDP																						
DMFDCA DMTPA DMORA		-3.7 -5.9	-3.4 -5.6	-4.5		-3.6									-4.0							
DMIPA		-3.3			-3.1	-5.0									-2.5							

•The bio-based furan-based compounds are less active compared to their phthalatebased counterparts.

Do endocrine-active compounds leach from conventional and biobased plastics to similar extent?

Perform migration study according to EC regulation:

- 1. Fill container with food simulant (depending on intended use)
- 2. Incubate for 10 days, 60° C
- 3. SPE-extraction of the 'leachate'
- 4. Analyse extract on CALUX panel (including Cytotox, ERα, anti-AR, anti-PR, Genotox)

- Specific CALUX high throughput panel of assays with good predictions in vivo effects available (e.g. endocrine disruption, reproductive toxicity, genotoxicity/carcinogenesis and acute toxicity)
- Pharmacokinetic modeling further improves predictions
- OECD/ECVAM/ISO validation, incorporation in guidelines, AOP linkage
- Test batteries can often be relatively simple when using specific assays
- Applicable for read-across, safe design/green chemistry
- Specially designed and very suitable for real-life assess safety of complex mixtures such as non-intentionally added substances and plastic leachates

