Development of a simple system for on-site detection of hydrogen peroxide.

Sauvain J.-J.¹, Suarez G.¹, Hopf N. B.¹, Connell S.¹, Romolo F. S.^{2,3}

¹: Institute for Work and Health (IST), Université de Lausanne/Geneva, 1066 Epalinges, Switzerland

- ²: Institut de Police Scientifique (IPS), Université de Lausanne, 1004 Dorigny Lausanne, Switzerland
- 3: Legal Medicine Section, Department SAIMLAL, SAPIENZA Università di Roma, Viale Regina Elena, 336, Rome, Italy

Background / Objectives

Background

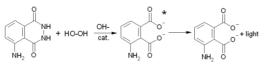
 Hydrogen peroxide (H₂O₂) is mainly used in industrial processes like pulp and textiles bleaching as well as for disinfection.

· Peak exposures are characteristic in such workplaces and are difficult to evaluate with the existing methods.

 Concentrated H₂O₂ is also used as precursor in manufacturing improvised explosive (IE) by criminals.

. In that case, security agencies need miniaturized systems allowing low detection limit for H2O2 in order to locate the IE manufacturing sites. Objectives

• To develop an analytical method based on a portable luminometer allowing to measure H₂O₂ peak exposure (15 minute sampling) with low detection limits;


To apply it on-site for evaluating occupational exposure and ability to locate IE manufacturing sites.

Methods

Method development

 Off-line procedure based on sampling gaseous H₂O₂ with an impinger filled with water:

 Measurement of the dissolved H₂O₂ with a luminescence-based method using a mixture of horse radish peroxidase (HRP) and luminol, following the reaction scheme

Luminol reacts with H2O2 to produce an electronically excited 3-aminophthalate, which emits in the blue (450 nm)

. Use of a commercially available portable luminometer (Hygienia EnSure, Camarillo, CA, USA).

• Preliminary tests were done in order to optimize the HRP type, ratio HRP/luminol, pH and duration of the recording signal. A bench luminometer (Multiplate reader Infinite M200, Tecan, Männedorf, Switzerland) was used for comparison purpose and considered as reference.

Method validation for the measurement of H₂O₂ in air

 Tests in a cabin (10 m³) were done in order to evaluate the H₂O₂ levels emitted during

- colour preparation and application on paper sheets (modelisation of the coloring activities in an hairdresser salon)
- concentrating a diluted H₂O₂ solution on an heating plate
- (modelisation of the first step necessary to prepare improvised
- explosives)
- Field measurements : a) in an hairdresser salon
 - b) in the field (ArmaSuisse Thun)

Acknowledgements

- The hairdresser and ArmaSuisse in Thun, for their collaboration in this project
- The European Community's Seventh Framework Programme (FP7/2007-2013), Grant Agreement No 261685 for funding this study.

Results / Discussion

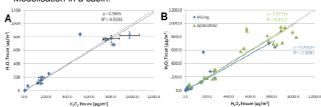

Method validation

Figure of merit of the luminescence method for H₂O₂ in air.

Reactive mix	HRP type X 0.8 U/ml – Luminol 8.3 mM in 0.1M Tris pH 8.4		
Calibration	Polynomial fit (second order)		
Limit of detection	$0.25 \ \mu\text{M}$ impinger 15 ml H ₂ O \longrightarrow 7 μg H ₂ O ₂ /m ³		
Repetability	< 10%		
Reading duration	6 minutes		

Coloring activities at an hairdresser salon

Modelisation in a cabin:

son of H_2O_2 results determined with the reference luminometer (Tecan) and the portable one Fig. 1: Com

A. Cumulative H₂O₂ levels (mixing+application, 15 min duration);

B. Contribution of the mixing and the application activities

• The measured levels of H₂O₂ in the cabin could be very high (above the OEL of 710 mg/m3; Fig. 1).

Field measurement

Sampling N°	Sampling place	H ₂ O ₂ [µg/m ³]	Activity	
1	Fix, next to the client	5 ± 1	Preparation and color	
2	Fix, next to the hairdresser	24 ± 1	application (hairs root).	
3	Personnal (hairdresser)	38 ± 3	Duration : 37 minutes.	
4	Fix, next to the client	11 ± 1	Preparation and color application (locks of hairs). Duration : 15 minutes.	
5	Fix, next to the hairdresser	42 ± 3		
6	Personnal (hairdresser)	106 ± 6		
7	Fix, next to the client	6 ± 1	After the colloration Background. Duration: 15 minutes.	
8	Fix, next to the hairdresser	6 ± 1		

 The H₂O₂ levels were low; the activity of color application on the locks is the most of concern (use of color with higher H2O2 content).

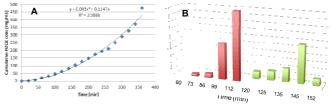


Fig 2: A. Evolution of the concentration of H2O2 over time in the closed cabin. B. Evolution of the concentration of H₂O₂ over time in two impingers, positionned at distance <5m (in red) and between 5-20 m (in green) in the field (ArmaSuisse) determined with the portable luminometer.

• H₂O₂ is volatile (Fig. 2 A.) and the developed method is sensible enough to detect emissions from heated solutions at distances of some meters in real situations (Fig. 2 B.).

Conclusion / Perspectives

· Preliminary testing in an occupational simulation has been successfully completed. Successful low-level environmental sampling/detection indicates a feasible method applicable for short term exposure level for H₂O₂ in occupational settina

 Detection of H₂O₂ from bomb factories producing IE is possible with the developed method and opportunities exist for continuous on-site monitoring via portable set-up systems.

> Institut universitaire romand de Santé au Travai Institute for Work and Health

