In search for obesogens

Ewa Szalowska BDS Amsterdam 2012

Obesogens-an environmental link to obesity

Obesogens (B. Blumberg 2006)- a subset of endocrine disrupting chemicals (EDCs) that activate PPARγ

PPARy is one of the nuclear receptors' ligandactviated transcription factor that mediates adipogenesis and maintenance of mature adipocytes

Adipose tissue energy homeostasis

MEHP and rosiglitazone bind similarly to the PPAR ligandbinding domain

Feige JN, et al. The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor g modulator that promotes adipogenesis. JBC 282:26:19152-19166 (2007)

MEHP regulates only a subset of genes compared with rosiglitazone

MEHP induces adipogenesis through PPARy

Feige JN, et al. The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor g modulator that promotes adipogenesis. JBC 282:26:19152-19166 (2007)

Obesogens selection

Compound	Concentrations µM	Product
Rosiglitazone (positive control)	$1.10^{5} > 1.10^{-3} \mu\text{M}$	Anti Diabetes
15d-PGJ2 prostaglandin (positive control)	$1.10^{6} > 1.10^{5} \mu\text{M}$	Natural agonist of PPARy
Flavone (positive control)	$2 \cdot 10^5 > 2 \cdot 10^1 \mu M$	Natural compound
Ethinyl-Estradiol (negative control)	1·10 ⁵ > 3, 1 μM	Hormone
DDT (dichlorodiphenyltrichloroethane)	4·10 ⁴ > 2 μM	Organochlorine, insecticide
DDE (Dichlorodiphenyldichloroethylene)	1·10 ⁴ > 2 μM	Product of DDT
β HCH (β-hexachlorocyclohexane)	1·10 ⁵ >1·10 ⁻³ μM	Pesticide product, organochloride
DES (Diethylstilbestrol)	4·10 ⁴ > 2 μM	Synthetic estrogen
Bisphenol A/B/C	$1.10^{5} > 1.10^{-3} \mu\text{M}$	Plasticizers
PCB 153 2,2',4,4',5,5'-Hexachlorobiphenyl	$1.10^{5} > 1.10^{-3} \mu\text{M}$	Environmental contaminant
DEHP (Bis(2-ethylhexyl)phthalate)	$1.10^{5} > 1.10^{-3} \mu\text{M}$	Plasticizer
MEHP (mono-2-ethylhexyl phthalate)	$1.10^{5} > 1.10^{-3} \mu\text{M}$	Plasticizer
TPTC tri-n-propyltin chloride	$1.10^{5} > 1.10^{-3} \mu\text{M}$	Biocides, organotin
TBTC Tributyltin chloride	0.1 > 0.00000001%	Biocides, organotonin
HCB β-hexachlorocyclohexane	$1.10^{5} > 1.10^{-3} \mu\text{M}$	Fungicide, organochloride, insecticide

PPARy2 CALUX

DEHP, PCB, Flavone-PPARy CALUX

Bisphenol A - PPARy CALUX

Obesogens beyond PPARy

Casals-Calas C, Desvergne B. 2011 Annu. Rev. Physiol.73:135-62

Human Simpson-Golabi-Bhemel-Syndrome (SGBS) cells

Advantages:

- Human
- More efficient to differentiate
- Unlimited source

No direct effect of TCDD on PPARy

No antagonistic effect

Cytotoxicity

Relative cell viability

Conc. TCDD (nM)

Dose dependent acute effect of TCDD on gene expression in undifferentiated SGBS cells

TCDD target genes: AhR, CYP1A1, CYP1B1

Inflammatory genes: MCP1, IKKβ, Serpin B2, IL-6, IL-1β, TNFα

TCDD target gene expression

100nM TCDD down-regulates AhR expression and up-regulates CYP1A1 and CYP1B1 expression

Inflammatory gene expression

1nM TCDD and higher induces dose-dependent up-regulation of inflammatory marker gene expression

Chronic effect of 10nM TCDD on gene expression during differentiation

TCDD target genes

Inflammatory marker genes

Adipogenic (metabolic) genes: PPARy, Adiponectin, Leptin, LPL, FABP4

TCDD target gene expression

TCDD down-regulates AhR expression and up-regulates CYP1A1 and CYP1B1 expression

Inflammatory gene expression

TCDD up-regulates most of the inflammatory marker gene expression

Adipogenic (metabolic) gene expression

Oil Red O staining

Dose dependent decrease of TCDD on the amount of lipid droplets

Oil Red O quantification

Conclusion

 TCDD despite clear toxicity significantly alters gene expression

 These changes could lead to functionally altered adipocytes that are predisposed to metabolic disorders

Conclusion

 PPARg CALUX is successful to identify subset of obesogens

• SGBS cell line can be used to identify larger number of obesogens/EDCs

Thanks to : Dionne Heezius (RIKILT) Marieke Jans (RIKILT) Dr. Ad Peijnenburg & Dr. Ron Hoogenboom (RIKILT)

Prof. Bram Brouwer (BDS) Dr. Peter A. Behnisch (BDS)

Prof. Martin Wabitsch (University of Ulm)

ewa.szalowska@wur.nl

