Current status and recent research for the official approval and use of the dioxin bioassays in Japan

Go Suzuki

National Institute for Environmental Studies Center for Material Cycles and Waste Management Research & Japan Environment and Children's Study (Jecs) Programme Office

Dr. Hidetaka Takigami (1970-2015)

Dr. Hideteka Takigami sadly passed away last July.

He was the outstanding researcher for POPs and related compounds in the field of waste management and recycling.

He led our research group and obtained also important outcomes with CALUX assays.

He applied CALUX assays to the environment and emission source monitoring to identify and control the pollutants such as dioxins, dioxin-like compounds and endocrine disrupting compounds.

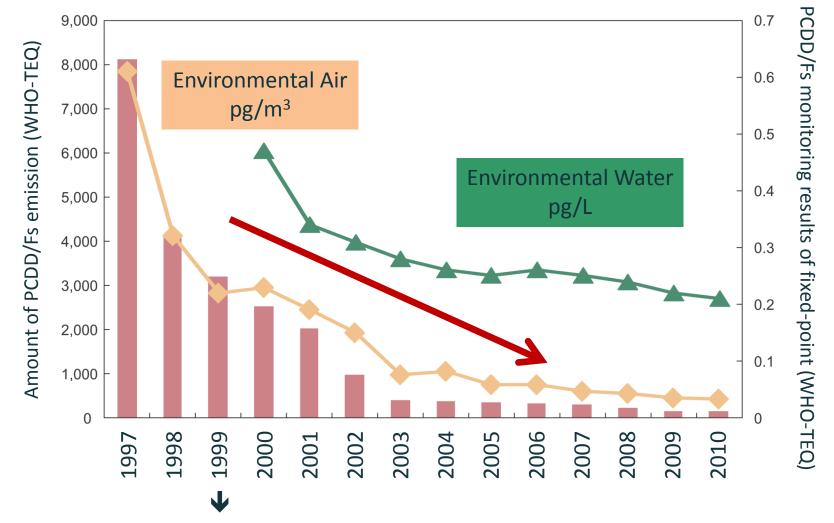
2006

8 18

The official approval and use of the dioxin bioassay in Japan

Ministry of the Environment, Japan

In 2005 in Japan, the Government allowed the use of bioassay methods including DR-CALUX assay, which gave acceptable results through official evaluation, for measuring dioxins in emission gas from small scale waste incinerators and incineration ash from all the waste incinerators.


Nakano, T., Muroyoshi, H., <u>Takigami, H.</u>, Sakai, S., Morita, M. et al. *Organohalogen Compd* (2006)

Current status for the official approval and use of the dioxin bioassays in Japan

Recent research with the dioxin bioassay

Current status for the official approval and use of the dioxin bioassays in Japan

Dioxin emissions and environmental levels in Japan

Enforcement of the Act on Special Measures concerning Countermeasures against Dioxins

Regulations for Dioxins in emission gas

Type of Facilities		Flue Gas Emission limits (ng WHO-TEQ/m³N)		Ash Treatment	
		New Facility	Existing Facility	Standards (ng WHO-TEQ/g)	
Waste incinerators	4 ton/h <	0.1	1	3	
	2 – 4 ton/h	1	5	3	
	< 2 ton/h	5	10	3	
Sintering facilities for	0.1	1	-		
Electric steel-making furnaces		0.5	5	-	
Facilities for collecting zinc		1	10	-	
Facilities for manufacturing aluminum base alloy		1	5	-	

6

Obligation to monitor dioxins

<u>Business entities</u> which own and manage specified emission sources such as an incinerator are also <u>obligated</u> under the law <u>to measure dioxins</u> <u>emission</u> at least once a year.

Measurement of dioxins

GC-HRMS

Selective, accurate and precise method but a high cost of the instrument and maintenance → ¥150,000 (€1,200) / 1 sample

In vitro bioassay detecting dioxins

High-throughput and cost-effective method but no information about isomers

→ ¥30,000 (€240) / 1 sample

Procedure for measurement of dioxins established in 2004

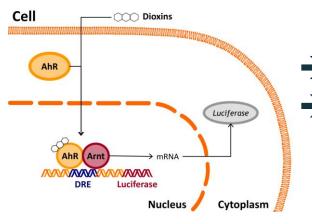
排出ガス、ばいじん及び燃え殻の ダイオキシン類に係る簡易測定法マニュアル (生物検定法) 平成22年3月 環境省水・大気環境局総務課ダイオキシン対策室

Procedure for measurement of dioxins in incinerator flue gas, fly ash and bottom ash (In vitro bioassays)

> Revised in March 2009 (Established in September 2004)

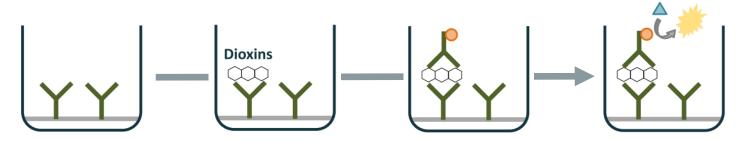
Approved by Japanese Ministry of Environment

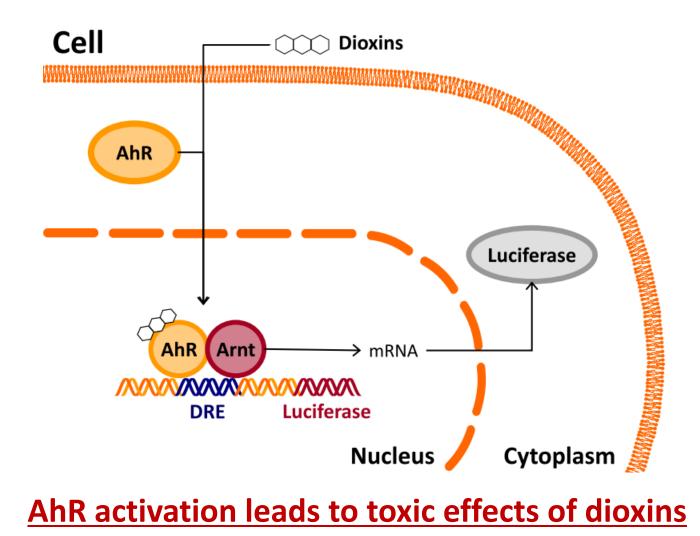
Measurement of dioxins by *in vitro* bioassays for incinerator flue gas, fly ash and bottom ash

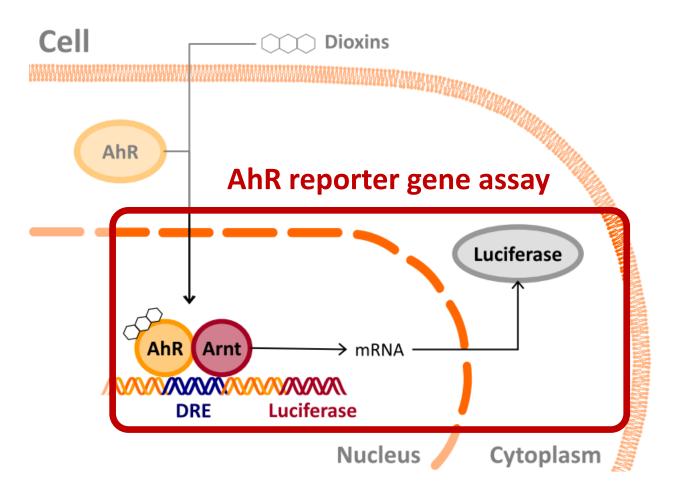

Flue gas

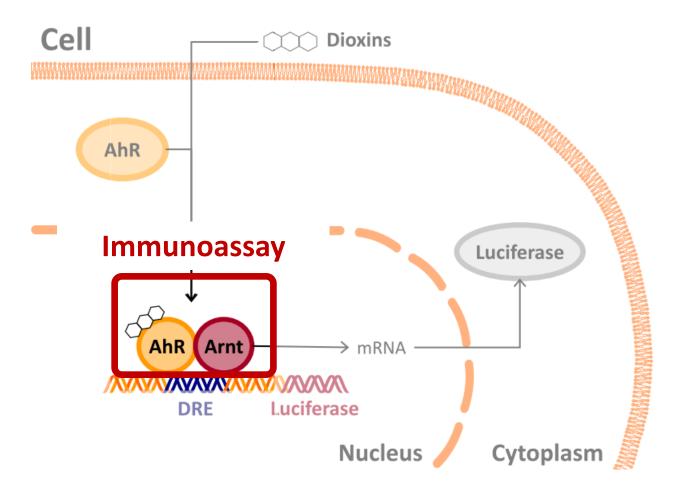
Fly ash

Bottom ash

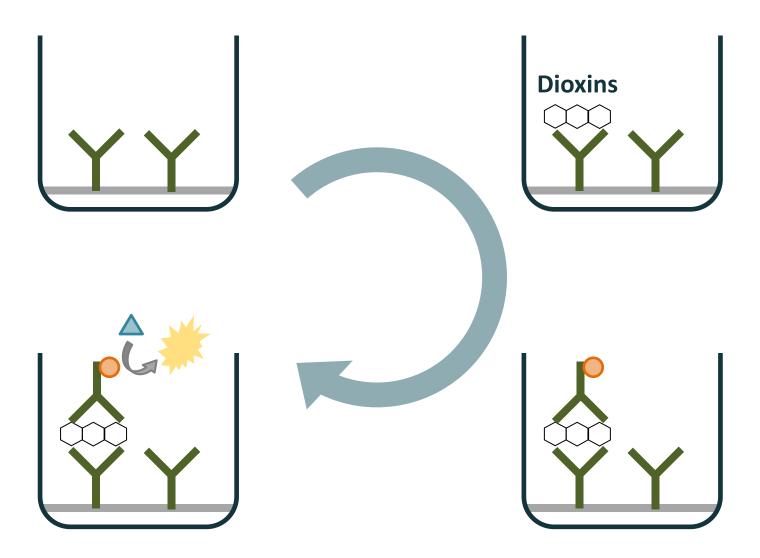

→ More than 4,000 samples per year for *in vitro* bioassay


1. AhR-binding assay



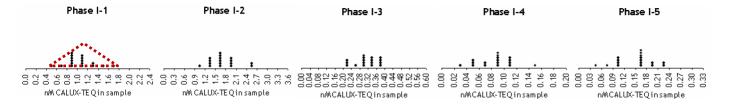

AhR reporter gene assay
Polyclonal anti-body based immunoassay

2. Monoclonal anti-body based immunoassay

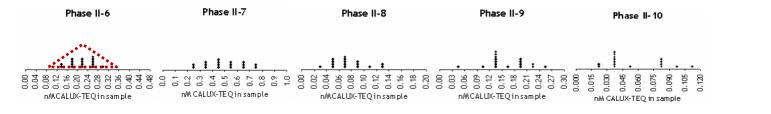


2. Monoclonal antibody based immunoassay

Importance of clean-up process for the dioxin bioassay



→ To remove labile AhR ligands such as PAHs


To extract dioxins from sample matrix without internal standards

Frequency distribution of *in vitro* bioassay data obtained in the interlaboratory calibration study

Phase I samples: Standard mixtures (PCDD/DFs, DL-PCBs)

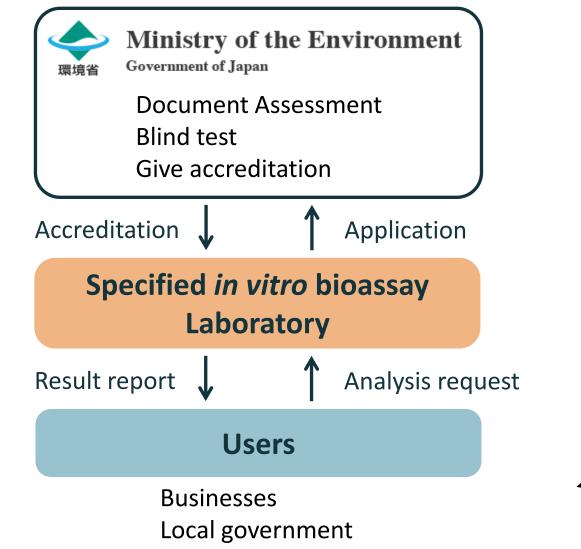
Phase II samples: Clean-up extracts (sediment, food/feed)

Phase III samples: Original samples (3 fish oil, 3 feedstuff)

Phase III-11 Phase III-12 Phase III-13 Phase III-14 Phase III-15 Phase III-16
→ Simple clean-up method with high recover rates of dioxins is an important for the detection of dioxins with *in vitro* bioassay!

Charted by Suzuki (2007) based on BICS 2005 report (2006) 17

In vitro bioassays combined with clean-up approved by Japanese Ministry of the Environment

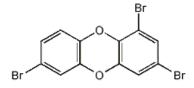

No.	Categories	Clean-up methods	Detection
1-1		Sulfuric acid silicagel column + Carbon column	XDS-CALUX assay with mouse H1L6.1c2
1-2		Sulfuric acid silicagel column + Carbon column	P450 HRGS assay with human 101L
1-3	AhR reporter gene assay	Multilayer silicagel column	Ah-luciferase assay with mouse HeB5
1-4		Sulfuric acid silicagel reflux treatment	DR-CALUX assay with rat H4IIE-luc
1-5		Multilayer silicagel column + Aluminum column	DR-EcoScreen assay with mouse hepatoma cell
1-6	Polyclonal antibody based immunoassay	Sulfuric acid + Multilayer silicagel column	Anti-Arnt polyclonal antibody Ah immunoassay

In vitro bioassays combined with clean-up approved by Japanese Ministry of the Environment

2. Immunoassay

No.	Categories	Clean-up methods	Detection
2-1	Monoclonal antibody based immunoassay	Multilayer silicagel column + carbon column	Anti-dioxin monoclonal antibody (specific to 2,3,7,8-substituted PeCDFs) Dio-quicker
2-2		Multilayer silicagel column + Carbon column	Anti-dioxin monoclonal antibody (specific to 2,3,7,8-substituted Pe&HxCDD/Fs) EA-Test for dioxins
2-3		Multilayer silicagel column + Aluminum column	Anti-dioxin monoclonal antibody (specific to ?) Dioxin ELISA kit TK
2-4		Multilayer silicagel column + Aluminum column	Anti-dioxin monoclonal antibody (specific to 2,3,4,7,8-PeCDF) KinExA ®

Scheme of the accreditation for *in vitro* bioassaylaboratory in Japan (Since 2006)


Recent research with the dioxin bioassay

TOXICOLOGICAL SCIENCES **133(2)**, 197–208 2013 doi:10.1093/toxsci/kft070 Advance Access publication March 14, 2013

REVIEW

Polybrominated Dibenzo-*p*-Dioxins, Dibenzofurans, and Biphenyls: Inclusion in the Toxicity Equivalency Factor Concept for Dioxin-Like Compounds

Martin van den Berg,^{1,*} Michael S. Denison,[†] Linda S. Birnbaum,[‡] Michael J. DeVito,[‡] Heidelore Fiedler,[§] Jerzy Falandysz,[¶] Martin Rose,^{||} Dieter Schrenk,^{|||} Stephen Safe,^{||||} Chiharu Tohyama,[#] Angelika Tritscher,^{**} Mats Tysklind,^{††} and Richard E. Peterson^{‡‡}

PBDDs

PBDFs

dl-PBBs

Brominated dioxins as impurity of PBDE mixtures

Occurrence of Polybrominated Biphenyls, Polybrominated Dibenzo-*p*-dioxins, and Polybrominated Dibenzofurans as Impurities in Commercial Polybrominated Diphenyl Ether Mixtures

NOBUYASU HANARI,[†] KURUNTHACHALAM KANNAN,^{*,‡} YUICHI MIYAKE,[†] TSUYOSHI OKAZAWA,[†] PRASADA RAO S. KODAVANTI,[§] KENNETH M. ALDOUS,[‡] AND NOBUYOSHI YAMASHITA[†]

National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, and Neurotoxicology Division, NHEERL/ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711

TABLE 3. Concentrations of Polybrominated Dibenzofurans (ng/g) in Commercial PBDE Mixtures

PBDF congener	DE-71 (Lot 15500[18A)		DE-79 (Lot 8525DG01A)	DE-83 (Lot 0480DL07B)	
tetra-BDF	100	<100	<100	<100	< 100
penta-BDF	157	315	231	<100	< 100
hexa-BDF	<100	8506	4863	<100	< 100
hepta-BDF	<200	4418	3657	1628	1242
octa-BDF	<200	5951	1718	47978	29540
total	257	19190	10469	49605	30783

TABLE 4. Global Demand for Commercial PBDE Mixtures (Tons) in 2001 and Estimated Content (kg) of PBBs and PBDFs in Commercial PBDE Mixtures

total demand for PBDEs in 2001 (ton) ^a					
PBDE mixture	USA	EU	Asia	total	
penta-BDE	7100	150	150	7400	
octa-BDE	1500	610	1500	3610	
deca-BDE	24500	7600	23000	55100	
total	33100	8360	24650	66110	
PBBs and PBDFs in PBDEs (kg)					
PBBs	33	2.1	4.6	39.7	
PBDFs	1009	315	947	2271	

^a Global PBDE demand data were from ref 2.

Hanari et al. Environ Sci Technol 2006

Unintentional production of brominated dioxins

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Review

Brominated flame retardants and the formation of dioxins and furans in fires and combustion

Mengmei Zhang^a, Alfons Buekens^{a,b}, Xiaodong Li^{a,*}

^a State key laboratory of clean energy utilisation, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, China ^b Formerly with Chemical Engineering department, Vrije Universiteit Brussel, Brussels, Belgium

HIGHLIGHTS

- BFRs (PBDEs, HBCD and TBBP-A) are the main sources of PBDD/Fs in combustion process.
- Precursor formation is the most relevant pathway for PBDD/Fs formation.
- Adding bromine into combustion system can enhance the formation of PCDD/Fs.
- Primitive recycling of e-waste produces the largest amounts of PBDD/Fs.

BFRs have been widely used in products in the world

Electronic

Car fabric

Compounds	Annual Sales (t)			
Compounds	2010	2011	2012	2013
Brominated flame retardants	430,000	444,600	429,500	434,000
Phosphorus flame retardants	188,000	190,000	187,000	190,000
Inorganic based-flame retardants	528,730	538,300	551,900	565,500

Fuji Chimera Research Institute, Inc. 2014

Environmentally sound management of brominated dioxins during lifecycle of product containing BFRs

Electronic

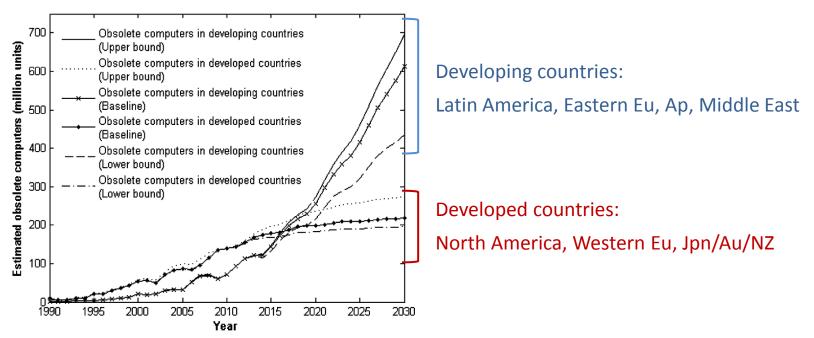
Car fabric

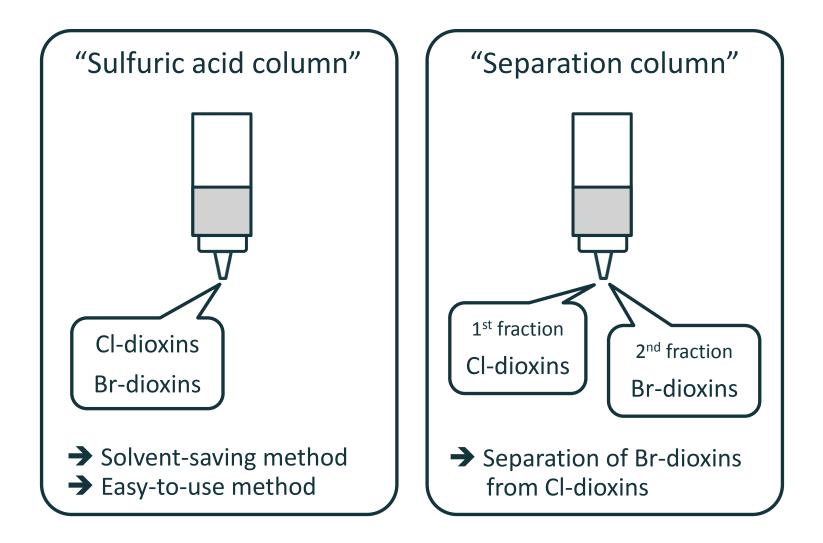
E-waste open-burning area in developing countries

1.00 4.60

For retrieving Cu from e-waste

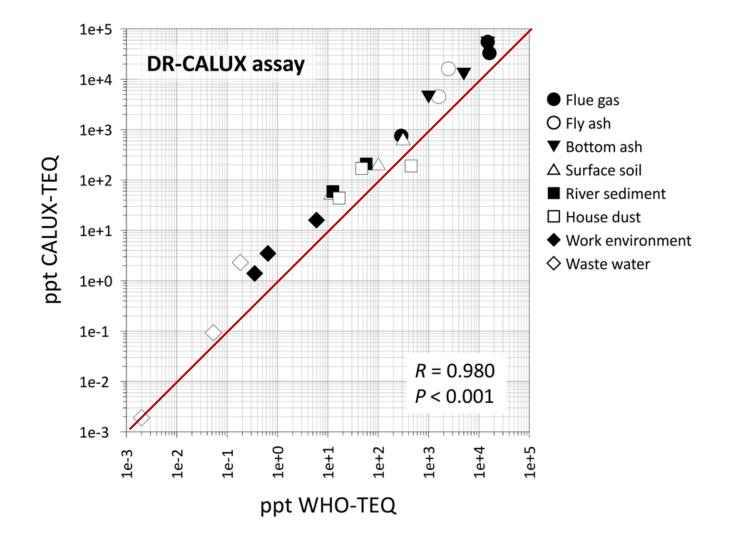
The first estimate of the worldwide volume of obsolete PCs




FIGURE 5. Forecasting of generation of obsolete computers in developed and developing world.

Developing countries will be disposing of more old computers than developed countries by 2018

Zhang et al. Environ Sci Technol 2016


→ E-waste recycling will be conducting and expanding in various countries...

Development of the new clean-up methods

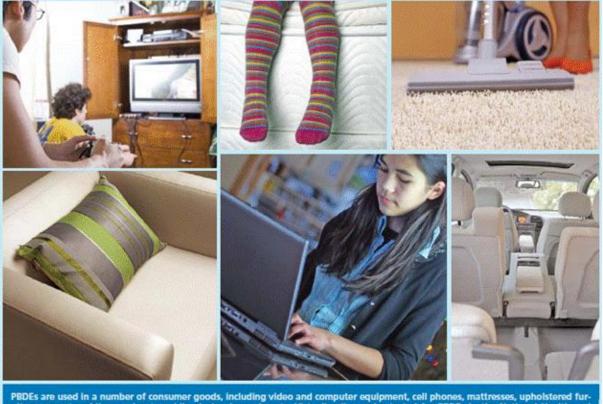
Environment Research and Technology Development Fund of the MOE, Japan (Go Suzuki, 3K133010) 29

The applicability of the new "sulfuric acid column"

Environment Research and Technology Development Fund of the MOE, Japan (Go Suzuki, 3K133010) 30

The applicability of the new "separation column"

Work environment	WE-03 ^{<i>a,b</i>}	0.35 pg WHO-TEQ/m
Work environment	WE-02 ^{<i>a,b</i>}	0.64 pg WHO-TEQ/m
Waste water	WW-03 ^a	2.0 pg WHO-TEQ/L
Bottom ash	BA-01 ^{<i>a</i>}	15 ng WHO-TEQ/g
Fly ash	FA-03 ^a	1.6 ng WHO-TEQ/g
Bottom ash	BA-02	5.0 ng WHO-TEQ/g
Flue gas	FG-02	15 ng WHO-TEQ/m ³ N
Bottom ash	BA-03	1.0 ng WHO-TEQ/g
Work environment	WE-01 ^b	6.0 ng WHO-TEQ/m ³
Waste water	WW-01	182 pg WHO-TEQ/L
Fly ash	FA-01	17 ng WHO-TEQ/g
Waste water	WW-02	53 ng WHO-TEQ/L
Flue gas	FG-01	16 ng WHO-TEQ/m ³ N
Flue gas	FG-03	0.29 ng WHO-TEQ/m
River sediment	RS-01	58 pg WHO-TEQ/g
Fly ash	FA-02	2.5 ng WHO-TEQ/g
Surface soil	SS-01	101 pg WHO-TEQ/g
River sediment	RS-02	13 pg WHO-TEQ/g
Surface soil	SS-02	12 pg WHO-TEQ/g
River sediment	RS-03	1.1 pg WHO-TEQ/g
House dust	HD-02	47 pg WHO-TEQ/g
Surface soil	SS-03	312 pg WHO-TEQ/g
House dust	HD-03	17 pg WHO-TEQ/g
House dust	HD-01	451 pg WHO-TEQ/g


Environment Research and Technology Development Fund of the MOE, Japan (Go Suzuki, 3K133010) 31

Results of application study with developed method

Samples	Sampling year	Regulation WHO-TEQ	Origin and average CALUX-TEQ ratio from Br-DXN fraction of samples exceeding regulation
Flue gas (<i>n</i> =50)	2014-2015	10 ng/m ³ N	Electronic manufacture, 90% (n=2)
Fly ash (<i>n</i> =22)	2014-2015	3 ng/g	Domestic waste disposal business, 9.5% (n=2) Industrial waste disposal business, 8.4% (n=3)
Bottom ash (<i>n</i> =19)	2014-2015	3 ng/g	Domestic waste disposal business, 21% (n=1) Construction industry, 15% (n=1)
Waste water (<i>n</i> =25)	2014-2016	10 pg/L	Flame-retarded textile factory, 67% (<i>n</i> =6) STP influent, 60% (<i>n</i> =2) Incinerator, 35% (<i>n</i> =5)
Soil (<i>n</i> =128)	2012-2014	1000 pg/g	E-waste open-burning area, 39% (n=9)
Sediment (<i>n</i> =35)	2004-2014	150 pg/g	E-waste processing area, 21% (<i>n</i> =7) Harbor, 10% (<i>n</i> =2)
Indoor air (<i>n</i> =18)	2014-2015	2.5 pg/m ³	Not detected
House dust (<i>n</i> =44)	2007-2008	(100 pg/g)	Hotel, 53% (n=3)Office, 43% (n=12)Household, 41% (n=2)Nursery school, 28% (n=3)

Brominated dioxins tended to be detected in samples related with brominated flame retardants (BFRs)

BFRs tend to be used in many kinds of household products

PBDEs are used in a number of consumer goods, including video and computer equipment, cell phones, mattresses, uphoistered furniture, carpet padding, and automobile electronics and seats. Virtually all samples tested for PBDEs in the National Health and Nutrition Examination Survey contained BDE-47.

Betts Environ Health Perspect 2008

- Brominated dioxins should be managed for environmentally sound management of BFR-containing product
- → Developed method will be useful screening tool for brominated dioxins

Thank you very much for kind attention!

Acknowledgments

Natinal Institute for Environmental Studies

Dr. Hidetaka Takigami Ms. Chieko Michinaka Ms. Kyoko Yoneoka Mr. Hiroo Takagi Mr. Akinori Hashimoto

Ministry of the Environment, Japan

Environment Research and Technology Development Fund (no. 3K133010)