

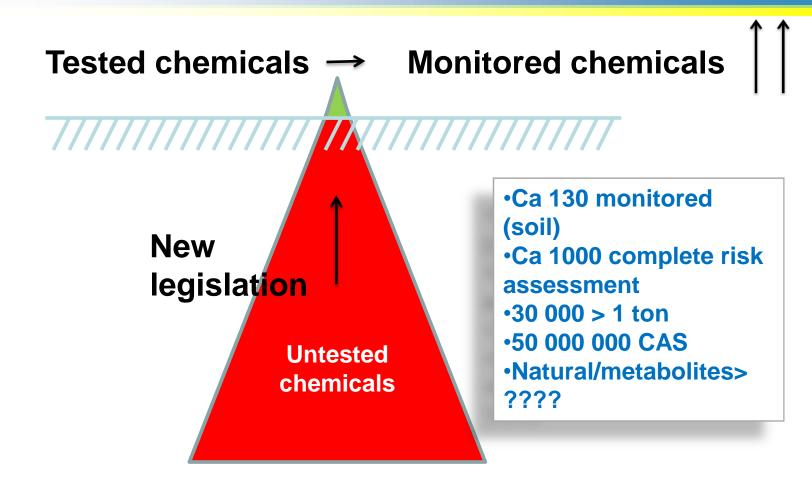
## **Bioanalysis highlights 2014**

## TOXICOLOGICAL PROFILING BY CALUX PANEL



### Behnisch PA, van der Burg B and Bram Brouwer

BioDetection Systems b.v. Amsterdam, The Netherlands




## Questions

- How **in vitro toxic** are dioxins/PCBs compared to pesticides, EDCs, metals & others?
- How can we **speed up** to eliminate the in vitro toxic effects of pollutants ?
- How can we <u>know</u> more about the <u>unknown</u> in vitro effects of chemical pollutants ?











## Heat Map of BFRs (Hamers et al)

| nd          |                                                                            |   |
|-------------|----------------------------------------------------------------------------|---|
| Compound    | 2R-292 0.92 ceen 2012 0.02 2012 0.02 2012 0.02 0.00 0.00                   |   |
| BDE39       |                                                                            |   |
| BDE99       |                                                                            |   |
| BDE127      |                                                                            |   |
| BDE185      | 1 1 1 3 1 1 2 1 1 3 2                                                      |   |
| HBCDD TM    | 1 1 1 1 1 1 <mark>1 2 2 1 3 3 2</mark> 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |   |
| HBCDD beta  | 1 1 1 2 1 1 2 2 1 <mark>3</mark> 2 2 <del>1 3 2 2</del>                    |   |
| HBCDD gamma |                                                                            |   |
| BDE28       |                                                                            |   |
| HBCDD alpha |                                                                            |   |
| BDE209      |                                                                            |   |
| TBBPA-DBPE  |                                                                            |   |
| BDE169      |                                                                            |   |
| BDE206      |                                                                            |   |
| BDE47       |                                                                            |   |
| BDE190      |                                                                            |   |
| 6OH-BDE47   |                                                                            |   |
| BDE181      |                                                                            |   |
| BDE79       |                                                                            | _ |
| BDE153      |                                                                            |   |
| BDE38       |                                                                            |   |
| BDE183      |                                                                            |   |
| BDE19       |                                                                            |   |
| BDE100      |                                                                            |   |
| BDE155      |                                                                            |   |
| BDE49       |                                                                            |   |
| ТВВРА       |                                                                            |   |
| 246-TBP     | 1 1 5 4 1 1 3 1 1 2 2                                                      |   |




## Heat Map of PFTs (Behnisch et al. DIOXIN 2012)

| PFAA                                          | Molecule                                                     | REP <sup>1</sup> | ΡΡΑRα                 | PPARγ              |
|-----------------------------------------------|--------------------------------------------------------------|------------------|-----------------------|--------------------|
| Perfluoro-butanoic acid (PFBA)                | C <sub>4</sub> F <sub>7</sub> O <sub>2</sub> -               | 0.26             | 0.17                  | < 2-fold induction |
| Perfluoro-pentanoic acid (PFPeA)              | C <sub>5</sub> F <sub>9</sub> O <sub>2</sub>                 | 0.50             | 0.22                  | < 2-fold induction |
| Perfluoro-hexanoic acid (PFHxA)               | $C_6F_{11}O_2$                                               | 0.41             | 0.38                  | < 2-fold induction |
| Perfluoro-heptanoic acid (PFHpPA)             | C7F13O2                                                      | 0.89             | 2.1                   | < 2-fold induction |
| Perfluoro-octanoic acid (PFOA)                | <u>C<sub>8</sub>F<sub>15</sub>O<sub>2</sub></u>              | 1                | <u>1</u>              | < 2-fold induction |
| Perfluoro-nonanoic acid (PFNA)                | C <sub>9</sub> F <sub>17</sub> O <sub>2</sub>                | 0.61             | 0.55                  | < 2-fold induction |
| Perfluoro-decanoic acid (PFDA)                | C10F19O2                                                     | 0.37             | Not active            | < 2-fold induction |
| Perfluoro-undecanoic acid (PFUnDA)            | C <sub>11</sub> F <sub>21</sub> O <sub>2</sub>               | 0.15             | Not active            | < 2-fold induction |
| Perfluoro-dodecanoic acid (PFDoA)             | C <sub>12</sub> F <sub>23</sub> O <sub>2</sub>               | Not active       | Not active            | < 2-fold induction |
| Perfluoro-tridecanoic acid (PFTrA)            | C <sub>13</sub> F <sub>25</sub> O <sub>2</sub>               |                  | Not active            | < 2-fold induction |
| Perfluoro-tetradecanoic acid (PFTeDA)         | C14F27O2                                                     |                  | Not active            | < 2-fold induction |
| Perfluoro-butane-sulfonic acid (PFBS)         | $C_4F_9O_3S^-$                                               |                  | Not parallel<br>curve | < 2-fold induction |
| Perfluoro-hexane-sulfonic acid (PFHxS)        | C <sub>6</sub> F <sub>13</sub> O <sub>3</sub> S <sup>-</sup> | 0.41             | < 2-fold induction    | 0.61               |
| Perfluoro-octanesulfonic acid (branched-PFOS) | C <sub>8</sub> F <sub>17</sub> O <sub>3</sub> S <sup>-</sup> | 0.26             | < 2-fold induction    | 0.40               |
| Perfluoro-octanesulfonic acid (linear-PFOS)   | C <sub>8</sub> F <sub>17</sub> O <sub>3</sub> S <sup>-</sup> |                  | < 2-fold induction    | <u>1</u>           |



## **Dutch Be-Basic Project**

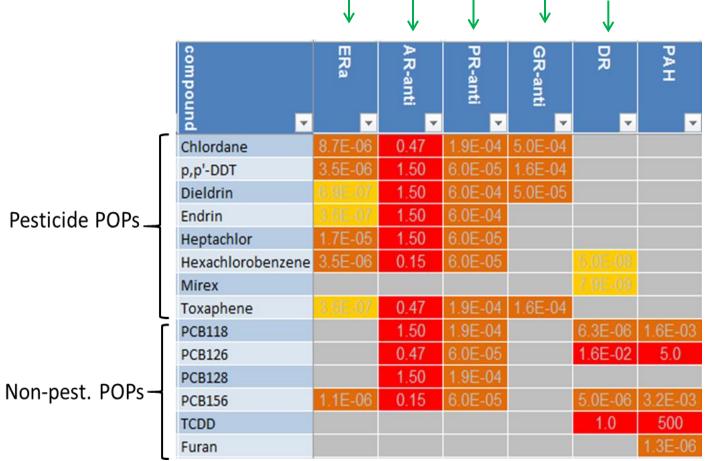
### **Example CALUX profiling: pesticides vs heavy metals**



no activity EC10 = 1E-3M EC10 = 1E-7M

Clearly different profiles!

pesticides:


- endocrine activity

heavy metals:

- acute toxicity
- general/oxidative stress



### Example CALUX profiling: REPs for CALUX panel of Dirty Dozen

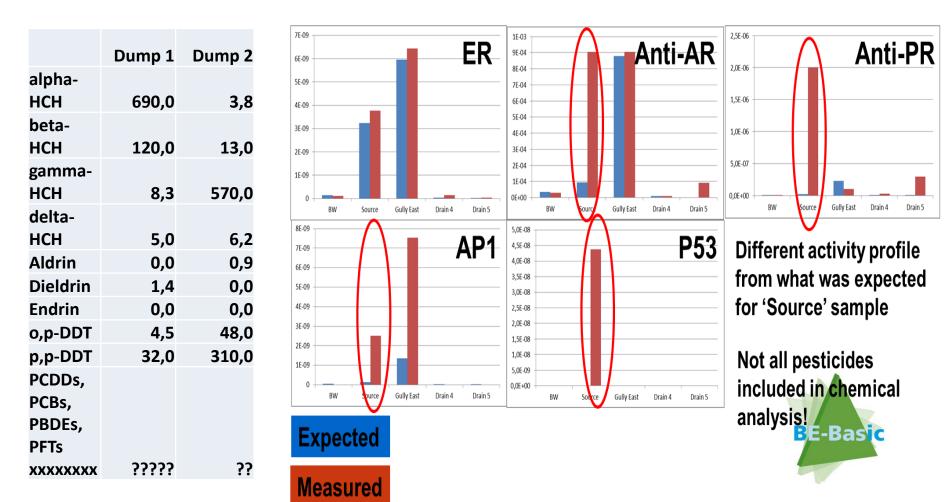


no activity EC10 = 1E-3M EC10 = 1E-7M

Clearly different profiles!

pesticides:

- endocrine activity


PCB/PCDD/Fs: - AhR receptor activity - anti-AR, anti-PR

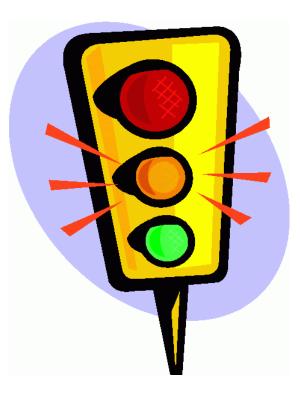


Values indicate relative potency (REP) values compared to the reference compound activity. Yellow -> red = increasing relative potency. Reference compounds: ERa; E2. AR-anti; flutamide. PR-anti and GR-anti; Ru486. DR; TCDD. PAH; Benzo-a-pyrene.

### **Chemical pattern vs Tox patterns**

Rapidly identify risks of single chemicals (for humans, environment)
Measure chemicals in complex mixtures and link this to hazards
Example pesticide dump side






## **EU DEMEAU Project**



# DISSEMINATION – Bioassays in water quality monitoring

- COST-EFFECTIVE complementary tool to chemical analysis
- Incorporates MIXTURES and UNKNOWNS





**Dutch & Australian case studies** 

## Encouraging examples

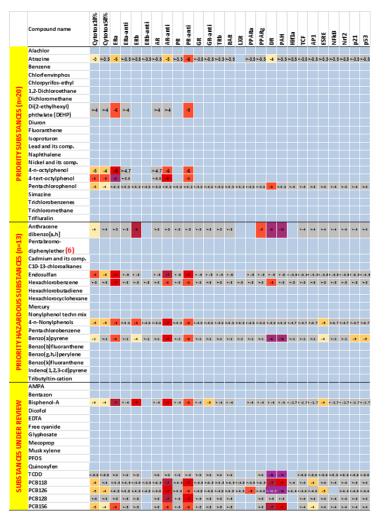
#### Environmental Science & lechnology



Benchmarking Organic Micropollutants in Wastewater, Recycled Water and Drinking Water with In Vitro Bioassays

Water and Drinking water with "In the biodessays Beate I. Escher,\*\* Mayumi Allinson,\*\* Rolf Altenburger," Peter A. Bain,\* Patrick Balaguer," Wikke Busch,\* Jordan Crago, "Nancy D. Denslow," Elke Dopp, \* Klara Hilscherova,\* Andrew R. Humpage, \* Ann Kumar,\* Marina Grimalaf, B. Sumith Jayasinghe,<sup>O</sup> Barbora Jarosova,\* A ja,<sup>D</sup> Serger Makarow,<sup>D</sup> Keith A. Maruya,\* Alex Medveder,\* Alvine C. Mehniton,<sup>O</sup> Jamie E. Mendez," Anita Poulsen,\*\* Erik Prochazka,\*\* Jessica Richard, \* Andrea Schifferti,\*\* Daniel Schlenk,\*\* Stefan Scholz, # Fujio Sharashi,\*\* Shane Snyder,\*\* Guanyong Su,\*\* Janet Y. M. Tang,\*\* Bart van der Burg,\* Sander C. van der Linder,\*\* Einge Werzer,\*\* Sandy D. Westerbiede,\*\* Chris K. C. Wong,\*\* Min Yang,\*\* Bonnie H. Y. Yeung,\*\* Xiaowei Zhang,\*\* and Frederic D. L. Leusch\*\*

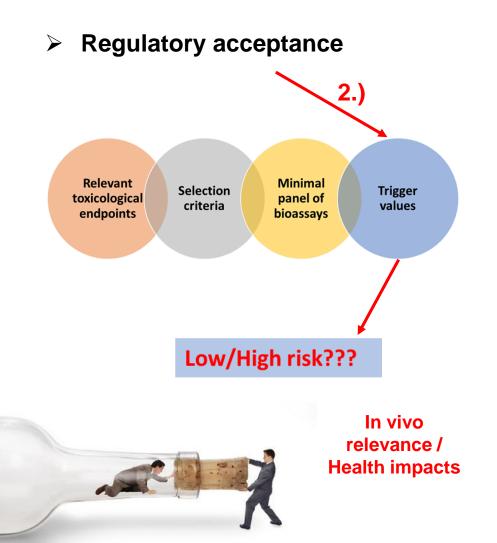
#### Relevant endpoints **PXR** activation Xenobiotic metabolism AHR activation **DR/PAH-CALUX** CAR Era-CALUX Estrogenicity **AR-CALUX** Anti-androgenicity **PR-CALUX** Hormone-mediated MoA Glucocorticoid activity **GR-CALUX** Progestagenic activity **TRβ-CALUX** Thyroid activity RAR-CALUX Mutations (AMES, SOS) P53-CALUX **Reactive MoA** DNA repair (umuC) P53 S9+ CALUX (?) DNA damage response (Micronucleus) Adaptive stress response Oxidative stress pathway Nrf2-CALUX Preimplantation toxicity **Developmental toxicity** ZFET Embryonic development Placenta Lipid metabolism ΡΡΑRα, ΡΡΑRy, ΡΡΑRδ PPARa, PPARy **Photosynthesis** Photosynthesis Cytotoxicity Viability Cytotoxicity **General response** Vibrio fischeri (Microtox) Cytotoxicity S9+ Algae growth


 $\triangleright$ 



Bottlenecks & solutions: first step ...to identify the relevant toxic endpoints of all relevant WFD compounds

### Change conventional monitoring practice


CALUX screening of the WFD compounds (n=33+8)



Identify the toxic endpoints → in line with the recent experiences (Dutch/Australian case) ??



Bottlenecks & solutions: 3nd step TEQ value approach to handle a complex mixture of endocrine disrupting chemical



#### 1.) TEQ value approach

Food safety (e.g. dioxins) Learning from existing safety assessment practice



Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays

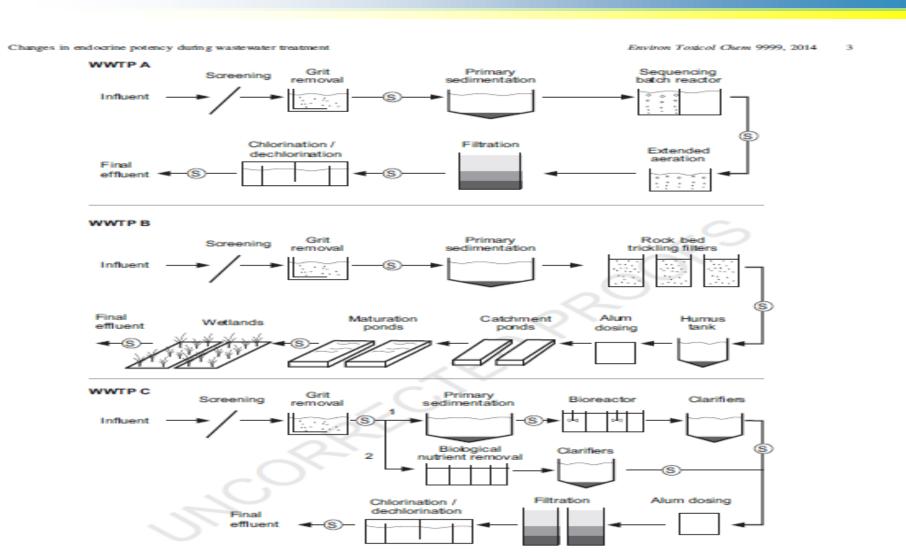
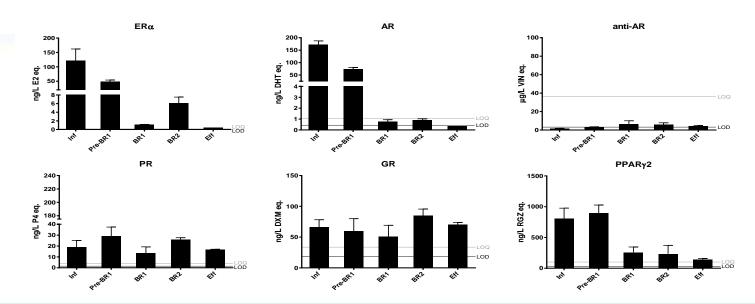
Walter Brand <sup>3,4,1</sup>, Cindy M. de Jongh <sup>3,1</sup>, Sander C. van der Linden <sup>b</sup>, Wim Mennes <sup>c</sup>, Leo M. Puijker <sup>a</sup>, Cornelis J. van Leeuwen <sup>a</sup>, Annemarie P. van Wezel <sup>a</sup>, Merijn Schriks <sup>3,4,4</sup>, Minne B. Heringa <sup>3,2</sup>

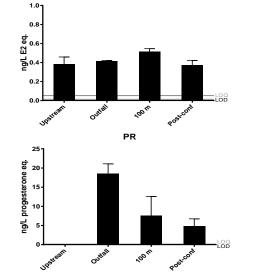
\* KWR Watercycle Rosarch Institute, Groningenhaven 7, 1433 PF Ninowegrin, The Nicherlands \* BioDenstion Systems RX, Ameterdam, Science Park 405, 1008 301 Amsterdam, The Nicherlands \* National Biotation for Public Heads and the Environment (RWM), Antonie von Leenverhookskan 9, PO Box 7, 3720 BA Bilhoven, The Nicherland

| Assay    | Trigger value         |
|----------|-----------------------|
| ER-CALUX | 3.8 ng E2-eq / L      |
| AR-CALUX | 11 ng DHT-eq / L      |
| GR-CALUX | 3.8 ng DEX-EQ / L     |
| PR-CALUX | 3.8 ng Org2058-eq / L |

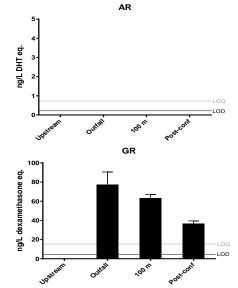


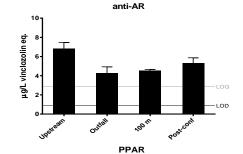
#### Anu Kumar and Peter Bain from CSIRO, Australia: Endocrine activity in wastewater extracts during treatment

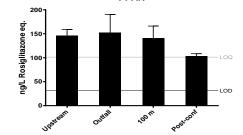





Figure 1. (A-C) Schematic diagrams showing the main treatment processes at each wastewater treatment plant (WWTP). Processing of solids has been omitted for clarity.




Anu Kumar and Peter Bain from CSIRO, Australia: Endocrine activity in wastewater extracts during treatment (CALUX bioassays)





WWTP C



ERα







WWTP B



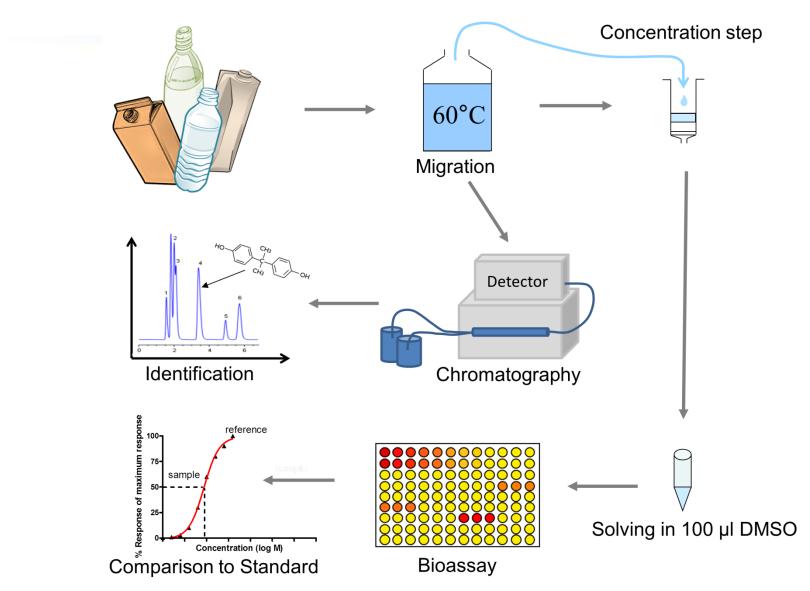
## ER CALUX vs Chemical analysis (E1, E2, EE2)

| WWIP               | Predicted total estrogenicity<br>(ng/L E2 equivalents) | Observed in vitro estrogenicity<br>(ng/L E2 equivalents ± SD) | Proportion accounted for by<br>predicted value % (range) |
|--------------------|--------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|
| A                  | 1                                                      |                                                               |                                                          |
| Influent           | 30.3                                                   | $49.0 \pm 2.83$                                               | 62 (58-66)                                               |
| Bioteactor         | 3.83                                                   | $1.55 \pm 0.5$                                                | 247 (187-363)                                            |
| Pilter             | 2.61                                                   | $1.65 \pm 0.07$                                               | 158 (151-165)                                            |
| Effuent            | 3.00                                                   | $5.50 \pm 4.7$                                                | 55 (29-361)                                              |
| В                  |                                                        |                                                               |                                                          |
| Influent           | 19.5                                                   | $28 \pm 22$                                                   | 70 (39-354)                                              |
| Trickling filter   | 7.54                                                   | $5.91 \pm 0.89$                                               | 128 (111-150)                                            |
| Weiland            | 2.71                                                   | $3.33 \pm 3.0$                                                | 81 (43-860)                                              |
| Effuent            | 3.97                                                   | $1.35 \pm 0.21$                                               | 294 (254-348)                                            |
| С                  |                                                        |                                                               |                                                          |
| influent           | 22.2                                                   | $122 \pm 40$                                                  | 18 (14-27)                                               |
| Post bioreactor    | 10.9                                                   | $47.5 \pm 6.4$                                                | 23 (20-27)                                               |
| Aerobic digester   | 1.95                                                   | $1.10 \pm 0.07$                                               | 177 (166-189)                                            |
| Clarifier effluent | 3.64                                                   | $6.1 \pm 1.4$                                                 | 60 (48-78)                                               |
| Effuent            | 1.80                                                   | $0.39 \pm 0.01$                                               | 463 (461-454)                                            |

Table 4. Comparison of predicted and measured total estrogenicity at different stages of wastewater treatment\*

www.ofi.at




## Detection and Identification of Endocrine Active Substances in Food Packaging OFI Austrian Research Inst. for Chem. and Tech.

Christian Kirchnawy and Johannes Mertl

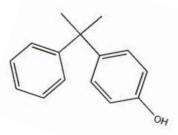


September 2014

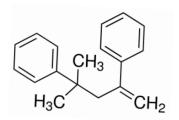




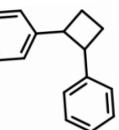



- PET, PP, PE, PS, composite films, paper, food cartons
- About 85% of analysed packaging did not show any hormone activity!
- Erα CALUX<sup>®</sup>: about 15% estrogen active, activities lower than expected, based on studies on mineral water
- No sample was tested androgen or thyroid hormone active
- Some of the estrogen active migrates were also antiandrogen active
- 8 out of 70 samples showed very low activities in the PPARγ CALUX<sup>®</sup>

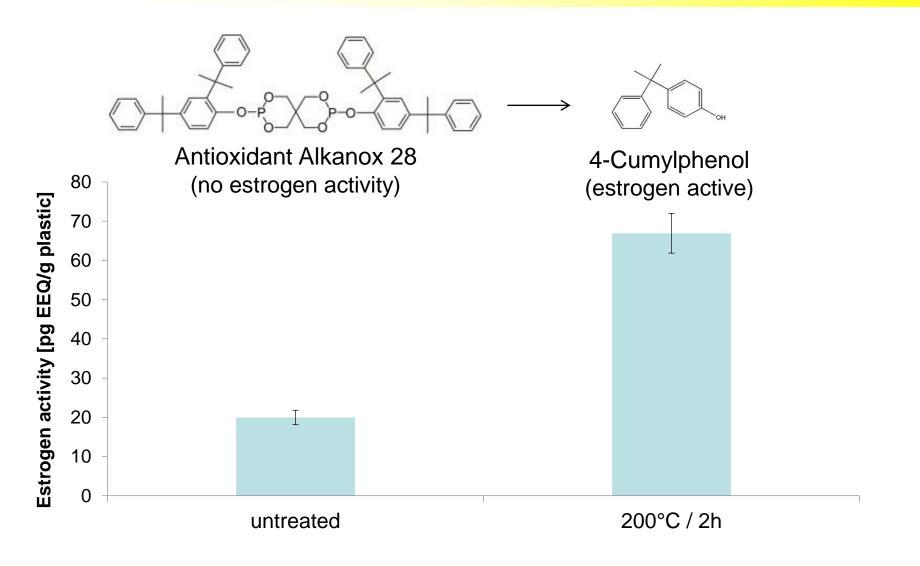





Identification by GC-MS and HPLC-MS difficult ! Substances identified that cause hormone activity:


- Degradation products of antioxidants
  - 2,4-dicumylphenol
  - 4-cumylphenol

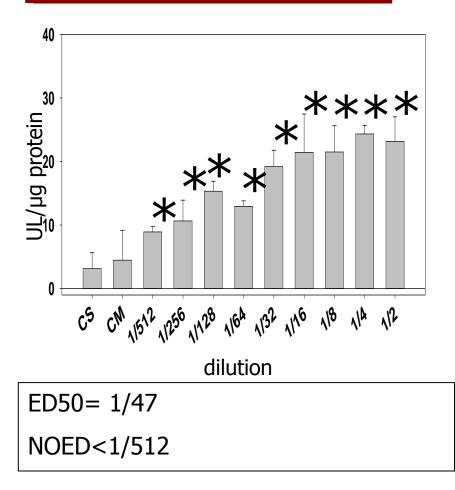



• By-products of polystyrene polymerization ?



- 1,3-diphenylpropane
- trans-1,2-diphenylcyclobutane
- 1,1,3-trimethyl-3-phenyl-2H-indene
- 2,4-diphenyl-4-methyl-1-pentene










## High oil spil activity observed in DR CALUX (By Dr. J. Navas Team, INIA, Madrid)

#### DOSE RESPONSE CURVE IN DR-CALUX



#### Summary:

- Water soluble fraction of Prestige's fuel induces CYP1A and activates AhR
- Such AhR activation can been associated with disruption of the estrogen receptor (ER) mechanisms of action, which can probably lead to reductions of the reproductive performance.





# Monitoring of endocrine disrupting chemicals in our daily life:

# House dust as marker for emerging endocrine disrupters in households



### Indoor house dust (5 countries) as marker for "household EDCs and obesogens" (Suzuki et al EST 2013)

|                              |              | dose | eliciting<br>effects | dose eliciting antagonistic effects <sup>b</sup> |     |     |     |        |
|------------------------------|--------------|------|----------------------|--------------------------------------------------|-----|-----|-----|--------|
|                              | dust extract | ERα  | GR                   | PPARγ2                                           | AR  | PR  | GR  | PPARγ2 |
| PR antagonism High-frequency | JPN HD       | 12   | NE                   | 120                                              | 120 | 39  | 120 | 120    |
| ERa agonism                  | JPN OD       | 12   | NE                   | NE                                               | 120 | 38  | 120 | 120    |
| AR antagonism                | US HD1       | 38   | 110                  | NE                                               | 38  | 38  | NE  | 11     |
| PPARγ2 antagonism            | US HD2       | 38   | NE                   | NE                                               | 38  | 38  | NE  | 110    |
| GR agonism                   | US HD3       | 12   | 40                   | NE                                               | 38  | 38  | NE  | 120    |
| ERa antagonism               | US HD4       | 39   | 100                  | NE                                               | 120 | 120 | NE  | 120    |
| AR agonism                   | VN HD1       | 110  | NE                   | NE                                               | 110 | 110 | NE  | NE     |
| PR agonism                   | VN HD2       | 110  | NE                   | NE                                               | 110 | 39  | NE  | NE     |
| PPARγ2 agonism               | PHL HD1      | 70   | NE                   | NE                                               | 70  | 23  | NE  | 70     |
| GR antagonism                | PHL HD2      | 69   | NE                   | NE                                               | 69  | 69  | NE  | 69     |
|                              | PHL HD3      | 72   | NE                   | NE                                               | 72  | 72  | NE  | 72     |
| 0 1 2 3 4 5 6                | IND HD1      | 140  | NE                   | NE                                               | 140 | 140 | NE  | NE     |
| Distance                     | IND HD2      | NE   | NE                   | NE                                               | NE  | NE  | NE  | NE     |



## BDS

## Many compounds in house dust & many CALUX effects = many more R&D studies needed

|           |                       | agonistic ef          | fects (M)            |                      | antagonistic effects (M) |                      |                      |                      |                       |                       |                      |                      |                       |                       |
|-----------|-----------------------|-----------------------|----------------------|----------------------|--------------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|----------------------|----------------------|-----------------------|-----------------------|
|           | ER                    | la                    | PPA                  | Rγ2                  | A                        | R                    | EF                   | Rα                   | P                     | R                     | G                    | R                    | PPA                   | Ry2                   |
| compounds | REC <sub>5</sub>      | EC <sub>50</sub>      | REC5                 | EC <sub>50</sub>     | RIC <sub>20</sub>        | IC <sub>50</sub>     | RIC <sub>20</sub>    | IC <sub>50</sub>     | RIC <sub>20</sub>     | IC <sub>50</sub>      | RIC <sub>20</sub>    | IC <sub>50</sub>     | RIC <sub>20</sub>     | IC <sub>50</sub>      |
| E2        | $1.0 \times 10^{-12}$ | $4.2 \times 10^{-12}$ |                      |                      |                          |                      |                      |                      |                       |                       |                      |                      |                       |                       |
| ROS       |                       |                       | $1.0 \times 10^{-8}$ | $5.2 \times 10^{-8}$ |                          |                      |                      |                      |                       |                       |                      |                      |                       |                       |
| FLU       |                       |                       |                      |                      | $1.0 \times 10^{-7}$     | $2.8 \times 10^{-7}$ |                      |                      |                       |                       |                      |                      |                       |                       |
| TAM       |                       |                       |                      |                      |                          |                      | $1.0 \times 10^{-7}$ | $3.3 \times 10^{-8}$ |                       |                       |                      |                      |                       |                       |
| RU486     |                       |                       |                      |                      |                          |                      |                      |                      | $7.3 \times 10^{-11}$ | $7.9 \times 10^{-11}$ | $1.0 \times 10^{-9}$ | $2.2 \times 10^{-9}$ |                       |                       |
| GW9662    |                       |                       |                      |                      |                          |                      |                      |                      |                       |                       |                      |                      | $3.0 \times 10^{-10}$ | $8.4 \times 10^{-10}$ |
| BDE-47    | $1.0 \times 10^{-6}$  | NC                    | $1.0 \times 10^{-5}$ | NC                   | $3.0 \times 10^{-7}$     | $5.2 \times 10^{-7}$ | NE                   | NC                   | $3.0 \times 10^{-7}$  | $1.2 \times 10^{-6}$  | NE                   | NC                   | NE                    | NC                    |
| BDE-99    | $3.0 \times 10^{-6}$  | NC                    | NE                   | NC                   | $3.0 \times 10^{-7}$     | $9.7 \times 10^{-7}$ | NE                   | NC                   | $3.0 \times 10^{-7}$  | $1.1 \times 10^{-6}$  | NE                   | NC                   | NE                    | NC                    |
| BDE-100   | $1.0 \times 10^{-6}$  | $5.1 \times 10^{-6}$  | NE                   | NC                   | $3.0 \times 10^{-8}$     | $9.8 \times 10^{-8}$ | NE                   | NC                   | $3.0 \times 10^{-7}$  | $3.7 \times 10^{-7}$  | NE                   | NC                   | NE                    | NC                    |
| BDE-183   | NE                    | NC                    | NE                   | NC                   | $3.0 \times 10^{-6}$     | $3.3 \times 10^{-6}$ | NE                   | NC                   | $1.0 \times 10^{-6}$  | $1.5 \times 10^{-6}$  | NE                   | NC                   | NE                    | NC                    |
| BDE-209   | NE                    | NC                    | NE                   | NC                   | NE                       | NC                   | NE                   | NC                   | NE                    | NC                    | NE                   | NC                   | NE                    | NC                    |
| γ-HBCD    | NE                    | NC                    | NE                   | NC                   | $1.0 \times 10^{-6}$     | NC                   | NE                   | NC                   | $3.0 \times 10^{-7}$  | $3.8 \times 10^{-7}$  | NE                   | NC                   | NE                    | NC                    |
| TBBPA     | $1.0 \times 10^{-5}$  | NC                    | $1.0 \times 10^{-5}$ | NC                   | $1.0 \times 10^{-5}$     | NC                   | NE                   | NC                   | $1.0 \times 10^{-5}$  | NC                    | NE                   | NC                   | NE                    | NC                    |
| TMP       | NE                    | NC                    | NE                   | NC                   | NE                       | NC                   | NE                   | NC                   | NE                    | NC                    | NE                   | NC                   | NE                    | NC                    |
| TEP       | NE                    | NC                    | NE                   | NC                   | NE                       | NC                   | NE                   | NC                   | NE                    | NC                    | NE                   | NC                   | NE                    | NC                    |
| TPrP      | NE                    | NC                    | NE                   | NC                   | NE                       | NC                   | NE                   | NC                   | NE                    | NC                    | NE                   | NC                   | NE                    | NC                    |
| TNBP      | $1.0 \times 10^{-5}$  | NC                    | NE                   | NC                   | $1.0 \times 10^{-5}$     | NC                   | NE                   | NC                   | $3.0 \times 10^{-6}$  | $4.2 \times 10^{-6}$  | NE                   | NC                   | NE                    | NC                    |
| TCEP      | NE                    | NC                    | NE                   | NC                   | NE                       | NC                   | NE                   | NC                   | NE                    | NC                    | NE                   | NC                   | NE                    | NC                    |
| TCIPP     | NE                    | NC                    | NE                   | NC                   | $1.0 \times 10^{-5}$     | NC                   | NE                   | NC                   | $3.0 \times 10^{-6}$  | $1.1 \times 10^{-5}$  | NE                   | NC                   | NE                    | NC                    |
| TDCIPP    | $3.0 \times 10^{-6}$  | NC                    | NE                   | NC                   | $1.0 \times 10^{-6}$     | $1.9 \times 10^{-6}$ | NE                   | NC                   | $3.0 \times 10^{-7}$  | $8.5 \times 10^{-7}$  | NE                   | NC                   | NE                    | NC                    |
| TBOEP     | NE                    | NC                    | NE                   | NC                   | NE                       | NC                   | NE                   | NC                   | $1.0 \times 10^{-5}$  | NC                    | NE                   | NC                   | NE                    | NC                    |
| TPHP      | $1.0 \times 10^{-6}$  | $3.3 \times 10^{-6}$  | NE                   | NC                   | $3.0 \times 10^{-6}$     | $5.8 \times 10^{-6}$ | NE                   | NC                   | $1.0 	imes 10^{-6}$   | $1.9 \times 10^{-6}$  | NE                   | NC                   | NE                    | NC                    |
| TEHP      | NE                    | NC                    | NE                   | NC                   | NE                       | NC                   | $1.0 \times 10^{-5}$ | NC                   | NE                    | NC                    | $1.0 \times 10^{-5}$ | NC                   | NE                    | NC                    |
| TMPP      | $1.0 \times 10^{-6}$  | NC                    | NE                   | NC                   | $3.0 \times 10^{-6}$     | $4.1 \times 10^{-6}$ | NE                   | NC                   | $3.0 \times 10^{-7}$  | $1.4 \times 10^{-6}$  | NE                   | NC                   | NE                    | NC                    |
| 2,6-TXP   | $1.0 \times 10^{-8}$  | $8.3 \times 10^{-8}$  | NE                   | NC                   | $1.0 \times 10^{-6}$     | $2.2 \times 10^{-6}$ | NE                   | NC                   | $1.0 \times 10^{-6}$  | $1.5 \times 10^{-6}$  | NE                   | NC                   | NE                    | NC                    |
| TOP       | NE                    | NC                    | NE                   | NC                   | NE                       | NC                   | NE                   | NC                   | NE                    | NC                    | NE                   | NC                   | NE                    | NC                    |
| 2-TIPPP   | NE                    | NC                    | NE                   | NC                   | $1.0 \times 10^{-6}$     | $3.5 \times 10^{-6}$ | $3.0 \times 10^{-6}$ | NC                   | $1.0 \times 10^{-6}$  | $3.0 \times 10^{-6}$  | $1.0 \times 10^{-5}$ | NC                   | NE                    | NC                    |
| 3-TIPPP   | NE                    | NC                    | NE                   | NC                   | $1.0 \times 10^{-5}$     | NC                   | NE                   | NC                   | $1.0 \times 10^{-6}$  | $3.5 \times 10^{-6}$  | NE                   | NC                   | NE                    | NC                    |
| 4-TIPPP   | NE                    | NC                    | NE                   | NC                   | $1.0 \times 10^{-5}$     | NC                   | $1.0 	imes 10^{-5}$  | NC                   | $3.0 	imes 10^{-6}$   | NC                    | $1.0 \times 10^{-5}$ | NC                   | $1.0 	imes 10^{-6}$   | $2.9 \times 10^{-6}$  |

BDS High persistent dioxin-like activity in house dust

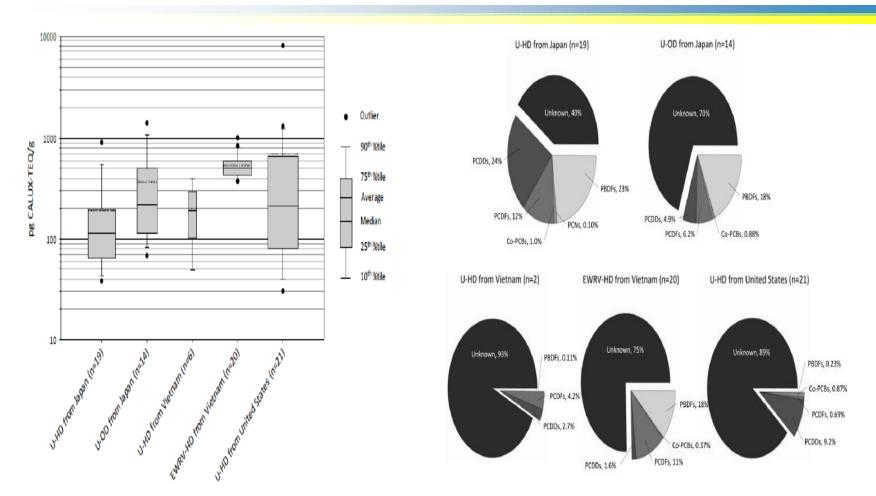



Fig (1). Comparison of dioxin-like activity (pg CALUX-TEQ/g) found in indoor dusts collected from Japan [51], Vietnam [57] and United States [58]. U-HD, urban house dust; U-OD, urban office dust; EWRV-HD, E-waste recycling village house dust.

Suzuki et al (2014), Current Organic Chemistry 18



# Ant-agonistic effects more relevant than agonistic effects

#### (a) Composite crude extracts of indoor dusts

|           |    | Agonistic | reults (REC. | EC <sub>s</sub> , µg-dust) Antagonistic results (RIC <sub>20</sub> , µg-dust) |        |     |     |     |     |        |
|-----------|----|-----------|--------------|-------------------------------------------------------------------------------|--------|-----|-----|-----|-----|--------|
| Compounds | AR | ERα       | PR           | GR                                                                            | PPARy2 | AR  | ERα | PR  | GR  | PPARy2 |
| JPN U-HD  | NE | 12        | NE           | NE                                                                            | 120    | 120 | NE  | 39  | 120 | 120    |
| JPN U-OD  | NE | 12        | NE           | NE                                                                            | NE     | 120 | NE  | 38  | 120 | 120    |
| US U-HD1  | NE | 38        | NE           | 110                                                                           | NE     | 38  | NE  | 38  | NE  | 11     |
| US U-HD2  | NE | 38        | NE           | NE                                                                            | NE     | 38  | NE  | 38  | NE  | 110    |
| US U-HD3  | NE | 12        | NE           | 40                                                                            | NE     | 38  | NE  | 38  | NE  | 120    |
| US U-HD4  | NE | 39        | NE           | 100                                                                           | NE     | 120 | NE  | 120 | NE  | 120    |
| VN U-HD1  | NE | 110       | NE           | NE                                                                            | NE     | 110 | NE  | 110 | NE  | NE     |
| VN U-HD2  | NE | 110       | NE           | NE                                                                            | NE     | 110 | NE  | 39  | NE  | NE     |
| PHL U-HD1 | NE | 70        | NE           | NE                                                                            | NE     | 70  | NE  | 23  | NE  | 70     |
| PHL U-HD2 | NE | 69        | NE           | NE                                                                            | NE     | 69  | NE  | 69  | NE  | 69     |
| PHL U-HD3 | NE | 72        | NE           | NE                                                                            | NE     | 72  | NE  | 72  | NE  | 72     |
| IND U-HD1 | NE | 140       | NE           | NE                                                                            | NE     | 140 | NE  | 140 | NE  | NE     |
| IND U-HD2 | NE | NE        | NE           | NE                                                                            | NE     | NE  | NE  | NE  | NE  | NE     |

#### (b) Flame retardants (FRs)

| Compounds |    | Agoni   | stic reults (R | EC <sub>5</sub> , M) |         | Antagonistic results (RIC <sub>20</sub> , M) |         |         |         |         |  |
|-----------|----|---------|----------------|----------------------|---------|----------------------------------------------|---------|---------|---------|---------|--|
| compounds | AR | ERa     | PR             | GR                   | PPARy2  | AR                                           | ERα     | PR      | GR      | PPARy2  |  |
| BDE-47    | NE | 1.0E-06 | NE             | NE                   | 1.0E-05 | 3.0E-07                                      | NE      | 3.0E-07 | NE      | NE      |  |
| BDE-99    | NE | 3.0E-06 | NE             | NE                   | NE      | 3.0E-07                                      | NE      | 3.0E-07 | NE      | NE      |  |
| BDE-100   | NE | 1.0E-06 | NE             | NE                   | NE      | 3.0E-08                                      | NE      | 3.0E-07 | NE      | NE      |  |
| BDE-183   | NE | NE      | NE             | NE                   | NE      | 3.0E-06                                      | NE      | 1.0E-06 | NE      | NE      |  |
| BDE-209   | NE | NE      | NE             | NE                   | NE      | NE                                           | NE      | NE      | NE      | NE      |  |
| y-HBCD    | NE | NE      | NE             | NE                   | NE      | 1.0E-06                                      | NE      | 3.0E-07 | NE      | NE      |  |
| TBBPA     | NE | 1.0E-05 | NE             | NE                   | 1.0E-05 | 1.0E-05                                      | NE      | 1.0E-05 | NE      | NE      |  |
| TMP       | NE | NE      | NE             | NE                   | NE      | NE                                           | NE      | NE      | NE      | NE      |  |
| TEP       | NE | NE      | NE             | NE                   | NE      | NE                                           | NE      | NE      | NE      | NE      |  |
| TPrP      | NE | NE      | NE             | NE                   | NE      | NE                                           | NE      | NE      | NE      | NE      |  |
| TBP       | NE | 1.0E-05 | NE             | NE                   | NE      | 1.0E-05                                      | NE      | 3.0E-06 | NE      | NE      |  |
| TCEP      | NE | NE      | NE             | NE                   | NE      | NE                                           | NE      | NE      | NE      | NE      |  |
| TCIPP     | NE | NE      | NE             | NE                   | NE      | 1.0E-05                                      | NE      | 3.0E-06 | NE      | NE      |  |
| TDCIPP    | NE | 3.0E-06 | NE             | NE                   | NE      | 1.0E-06                                      | NE      | 3.0E-07 | NE      | NE      |  |
| TBEP      | NE | NE      | NE             | NE                   | NE      | NE                                           | NE      | 1.0E-05 | NE      | NE      |  |
| TPhP      | NE | 1.0E-06 | NE             | NE                   | NE      | 3.0E-06                                      | NE      | 1.0E-06 | NE      | NE      |  |
| TEHP      | NE | NE      | NE             | NE                   | NE      | NE                                           | 1.0E-05 | NE      | 1.0E-05 | NE      |  |
| TCP       | NE | 1.0E-06 | NE             | NE                   | NE      | 3.0E-06                                      | NE      | 3.0E-07 | NE      | NE      |  |
| 2,6-TXP   | NE | 1.0E-08 | NE             | NE                   | NE      | 1.0E-06                                      | NE      | 1.0E-06 | NE      | NE      |  |
| TOP       | NE | NE      | NE             | NE                   | NE      | NE                                           | NE      | NE      | NE      | NE      |  |
| 2-TIPP    | NE | NE      | NE             | NE                   | NE      | 1.0E-06                                      | 3.0E-06 | 1.0E-06 | 1.0E-05 | NE      |  |
| 3-TIPP    | NE | NE      | NE             | NE                   | NE      | 1.0E-05                                      | NE      | 1.0E-06 | NE      | NE      |  |
| 4-TIPP    | NE | NE      | NE             | NE                   | NE      | 1.0E-05                                      | 1.0E-05 | 3.0E-06 | 1.0E-05 | 1.0E-06 |  |

Fig (4). Agonistic and antagonistic potencies on AR, ER  $\alpha$ , PR, GR, and PPAR  $\gamma$  2 of (a) composite crude extracts of indoor dusts collected from Japan (JPN), United States (US), Vietnam (VN), the Philippine (PHL) and Indonesia (IND) and (b) flame retardants (FRs) [84]. REC<sub>5</sub>: Agonist concentration indicating 5% induction. RIC<sub>20</sub>: Antagonist concentration indicating 80% induction. NE: No effect at about 70  $\mu$  g-dust in well for PHL and about 100  $\mu$  g-dust in well for JPN, US, VN and IND for indoor dusts and at 1.0E-5 M for FRs. U-HD, urban house dust; U-OD, urban office dust.