Transcriptomic gender differences in newborns upon prenatal exposure to Polycyclic Aromatic Hydrocarbons in relation to birth weight

Kevin Hochstenbach

BioDetectors, 2016 Lausanne, Switzerland

Contents

Background

- Polycyclic Aromatic Hydrocarbons (PAHs)
- Why newborns?
- Health implications: birth weight
- Why gender differences?
- Toxicogenomics

Results

Polycyclic Aromatic Hydrocarbons

Group of organic compounds that occur naturally in mixtures

Incomplete combustion:

- Tobacco smoke, wood smoke
- Air pollution
- Grilled, smoked foods
- Occupational exposure

Health implications are a public concern

- Carcinogens
- Immunotoxicants
- Developmental toxins

9th BioDetectors conference Lausanne, Switzerland

In utero: a critical window of exposure

13th century

Renaissance

1940s

fwo

- Fetal vulnerability
 - > Cell proliferation
 - < Detoxification system
 - < DNA repair
 - < Immune system

Health implications fetal exposure PAHs

- Cross the placental barrier and affect:
 - Respiratory symptoms, asthma and wheezing
 - Neurological and cognitive health outcomes
 - Birth outcomes
- Birth weight influences
 - Survival and perinatal morbidity
 - Subsequent health and development.
 - Associated with leukemia and other chronic diseases.
- Birth weight more strongly affected in males
- Gender differences in gene expression responses

Environ Res. 2009; 109(4): 447–456

Toxicogenomics

9th BioDetectors conference Lausanne, Switzerland

Toxicogenomics

Toxicogenomics

Normal situation

Transcriptomic gender differences

Research Article

Cancer Epidemiology, Biomarkers & Prevention

Global Gene Expression Analysis in Cord Blood Reveals Gender-Specific Differences in Response to Carcinogenic Exposure *In Utero*

Kevin Hochstenbach¹, Danitsja M. van Leeuwen¹, Hans Gmuender⁴, Ralf W. Gottschalk¹, Martinus Løvik⁵, Berit Granum⁵, Unni Nygaard⁵, Ellen Namork⁵, Micheline Kirsch-Volders⁶, Ilse Decordier⁶, Kim Vande Loock⁶, Harrie Besselink², Margareta Törnqvist⁷, Hans von Stedingk⁷, Per Rydberg⁷, Jos C.S. Kleinjans¹, Henk van Loveren^{1,3}, and Joost H.M. van Delft¹

Cancer Epidemiol Biomarkers Prev. 2012;21(10):1756-67

9th BioDetectors conference Lausanne, Switzerland

Maastricht University

Transcriptomic gender differences

		# Significant				
		Processes	T-Value	P-Value	T-Value	P-Value
Biomarker	Process	Males/Females	Males	Males	Females	Females
DR CALUX		5/29				
	Nucleosome assembly		4.1	0.154	6.4	<0.001
	T-cell receptor signaling pathway		-2.7	1.000	-4.5	0.001
	B-cell receptor signaling pathway		-0.6	1.000	-4.1	0.005
	TNF-alpha-NF-kB Signaling Pathway		2.9	0.551	-4.2	0.010
GA Hb-adducts		8/12				
	Wnt signaling pathway		4.2	0.032	0.2	1.000
‰MNBN		30/13				
	Translational elongation		8.5	< 0.001	-5.7	< 0.001
	Spliceosome		4.6	0.002	-5.4	<0.001
	mRNA processing		4.0	0.012	-4.1	0.002
	Pathways in cancer		4.8	0.001	1.8	1.000
	Translational elongation		8.5	<0.001	-5.7	<0.001

Cancer Epidemiol Biomarkers Prev. 2012;21(10):1756-67

Are there transcriptomic gender differences in newborns upon prenatal exposure to PAHs in relation to birth weight??

ERC project Coordinator: Funding ENVIR*ON*AGE Prof. Tim Nawrot FWO grant

Meet-in-the-middle approach

PAH-induced gene expression - Common

	category	#
	Replication/Transcription/Translation	29
	Cell cycle/division/proliferation	
	Immune response	6
	GPCR	2
	<u>Proteosome</u>	2
	DNA repair	1
Consensus	Embryogenesis	1
Enrichment Q value 0.0	t analyses 05	uu
		U

9th BioDetectors conference Lausanne, Switzerland

PAH-induced gene expression - Females

category	PAH
TCA cycle	8
Disease	3
Cell cycle/division/proliferation	2
Replication/Transcription/Translation	2
DNA damage response	1
Proteasome	1
Cancer	1
Integrin	1

PAH-induced gene expression - Males

category	#	category	#
Signal transduction	103	Vascular system	6
Immune response	18	Mitochondrial	5
Neurobiology	14	DNA damage response	4
Diseases	12	Senescence/Apoptosis	4
Cell cycle regulation	10	Biotransformation	3
Developmental Biology	10	Endocrine system/hormones	3
DNA packaging	10	Telomeres	3
Epigenetics	8	AhR-ER-AR	2
Cancer	7	Folate	1
Glycobiology	6	Vitamin E	1

fwo

Meet-in-the-middle: Overlap common

Meet-in-the-middle: Overlap common

category	Overlap
Replication/Transcription/Translation	26
Cell cycle/division/proliferation	12
GPCR	1
DNA repair	1

Meet-in-the-middle: Overlap males

Meet-in-the-middle: Overlap males

Si In N	EGF – Ras - ERK - PI3K-Akt TCR signaling-NFkB cascade IL-1 p38 Cyclin E during G1/S transition		ATM BARD1		
D			Senescence/Apoptosis 0		
Ce	Il cycle regulation	1	Biotransformation 3		
D E	Wnt signaling		Complexation between folic Protective against PAH-DNA		
Ca	ncer	4	auuuci iormation		
Gl	ycobiology	2	Vitamin E 1		

fwo

Take home message!

- Gender-specific PAH-Birth weight association through modulation of the fetal transcriptome:
 - Higher transcriptomic response in male newborns upon prenatal PAH exposure
 - Possible gender-specific PAH mechanisms-of-action
 - Epigenetics
 - DNA damage:
 - Cell cycle regulation
 - P38/JNK
 - Apoptosis
 - Folate
 - Vitamine E

Ongoing and future research

Develop a toxicogenomics-based biomarker indicative of in utero exposure to PAHs

Apply additional PAH-CALUX on subset to validate developed biomarker

Measure PAH adducts and its newly developed transcriptome signature in cord blood of 850+ newborns within the ENVIRONAGE birth cohort by means of qRT-PCR

Identify transcriptomic profiles in cord blood associated with the effects of in utero PAH exposure on:

- Telomere length
- Neurodevelopment
- Follow up data on immune functionality.

Tim Nawrot Ellen Winckelmans

Jos Kleinjans Marcel van Herwijnen Hasselt University, BE Hasselt University, BE

Maastricht University, NL Maastricht University, NL

Bram Brouwer Harrie Besselink Peter Behnisch BioDetection Systems, NL BioDetection Systems, NL BioDetection Systems, NL

