

A Bioassay-assisted Testing Strategy: Risk assessment of Food Contact Materials

OFI - Austrian Research Inst. for Chemistry and Technology
Franz-Grill-Str. 5, Objekt 213
1030 Vienna, Austria

The MIGRATOX Project

Safety Assessment of Food Contact Materials (FCMs)

Focus on Genotoxicity/Mutagenicty of Material Migrates

Based on *in-vitro* Bioassays

NIAS: Non-Intentionally Added Substances

Raw materials:

Monomers Additives Catalysers Pigments,...

Chemical Analysis

IAS:
Intentionally Added
Substances

Additives, Monomers,...

NIAS:

Non-Intentionally Added Substances

Degradation products, Contaminants, Side products

Chemical Analysis + Bioassays

How Bioassays ease NIAS-Risk Assessment...

Threshold of toxicological concern (TTC):

LOD for a **chemically unknown** substance (60 kg person)

 $0.15 \mu g/d \rightarrow 0.15 \mu g/L$

Detection limits of Bioassays

Bioassay-assisted Testing Strategy

Simulant

95% Ethanol

Simulant Volume

300 mL

S/V Ratio

- 1 dm²/100 mL (EN1186-1) or
- given by intended use (EU 10/2011)

Methods

- Evaporation
- (Solid Phase extraction)

Concentration factor

• 300

Assays

- MTT-Assay
- (Anti-) ER-CALUX
- (Anti-) AR-CALUX
- PAH-CALUX
- p53 –CALUX
- Ames MPF
 (Bernhard Rainer, FH Campus Vienna)

- Cytotoxicity
- Endocrine Disruptors
- AhR-active substances
- Genotoxic Substances

Promising approach – but still a lot of work to do

Major challenges:

- Sample preparation: false negatives (e.g. loss of volatiles), false positives (contaminants)
- Bioassays: Sensitivity many genotox assays are not sensitive enough to detect low concentrations of genotoxins (0.15 μg/L, 10 μg/L)
- Validation: e.g. Influence sample matrice, Reproducibility
- Standardization

Genotoxic Substances

A broad spectrum of physico-chemical properties

Hydrophilic/hydrophobic Properties

Category	$Log\;K_{ow}$
Hydrophilic	<0
Medium hydrophilic	0 to 1
Medium hydrophobic	1 to 3
Hydrophobic	>3

Category	LogH [Pa.m³/mol]	
Volatile	>1	
Intermediate	-2 to 1	
Low-volatility	-3 to -2	
Involatile from water	< -3	

Model Substances

Substance	ee	Hydrohilic/Hydrophobic (logK _{o/w})	Volatility (logH [Pa.m³/mol])
Benzyl Butyl Phthalate endocrine		Hydrophobic (4,73)	Intermediate (-0,89)
Bisphenol A endocrine	HO OH	hydrophobic (3,32)	Involatile (-5,40)
Benzophenone endorcrine		hydrophobic (3,18)	Intermediate (-0,72)
4-Nitroquinoline N-Oxide genotoxic	0°-N* N*	Medium hydrophobic (1,09)	Involatile (-8,75)
Benzo[a]pyrene (+S9) genotoxic, AhR		hydrophobic (6,13)	Intermediate (-1,34)
Benzo[a]anthracene (+S9) genotoxic, AhR		hydrophobic (5,76)	Intermediate (0,07)
1,4-Dichlorobenzene carcinogenic	CI	hydrophobic (3,44)	Volatile (2,43)
Resorcinol toxic	НООН	Medium Hydrophilic (0,80)	Involatile (-5,00) www.of

www.ofi.at

Validation of Rotary Evaporation

95% Ethanol recovers involatile and intermediate volatile substances.

With increasing boiling point of the simulant, the recovery of intermediate volatile substances decreases.

Risk assessment using in-vitro Bioassays

114 samples analysed

Sample types:

- Paper & Board
- Food Carton
- Can Coating
 (Epoxy, Polyester, Acryl,...)
- Polyolefins (PP, HDPE, LDPE, LLDPE)
- Polystyrene

Samples sources:

- Provided by the Industry Board (MIGRATOX)
- Empty packaging provided by retailer (market brand)
- Research samples
- Medical device grade materials

Extraction/Migration: 95% Ethanol

Future steps

- Sample preparation:
 - Comparison of sample preparation methods
 - Validation: loss of volatiles, contaminations
- Bioassays:
 - Comparison of different in-vitro methods
 - Improve sensitivity, new test designs
- Sample screenings:
 - How many positives? → Avoiding false-negatives or false-positives?
- Validation:
 - Ensure that methods are suitable for FCM migrates/extracts
 - Ensure that methods are reproducible
- Standardization:
 - Defined protocols, specific guidelines
 - Acceptance by cooperation with authorities

Elisa Mayrhofer, MSc

Technical Competence Center Microbiology & Cell Culture

Franz-Grill-Str. 5, Objekt 213 1030 Vienna, Austria t: +43 1 798 16 01 – 607 elisa.mayrhofer@ofi.at

