

8th BioDetectors 2014

Applications of bioassays to prioritize chemical food safety issues

Maricel Marin-Kuan maricel.marin-kuan@rdls.nestle.com

Hazard identification in food industry

substances potentially used in packaging industry

(adapted from U.S. EPA)

substances potentially coming from environmental, agricultural practices and process-related contamination

Diverse sources of potential food contamination

Hazard identification: Which are the tools available?

> Chemistry

> Toxicology

Knowing the sources:

e.g. dealing with food packaging

Expected/known

- Intentionally Added SubstancesIAS
- Regulatory toxicology data
- Safe level of exposure

Risk Assessment principles

Compliance

Unexpected/unknown

- Non-Intentionally AddedSubstances NIAS:
 - Impurities in ingredients
 - Reaction intermediates/products
 - Decomposition products
- Many?
- Not characterized?

Food packaging safety evaluation

- No harmonized & standardized procedures
- Traditional toxicology-based methodology requiring full characterization of all substances neither practical nor feasible

Multidisciplinary approach for packaging safety

In vitro tools for the "biodetection" of potential food active compounds

I. Sound Biological Targets in toxicology

II. Nestlé BioDetection battery of tests

Endpoints	Platform/method	Bioassays					
	ToxInsight	Estrogen & androgen receptor redistribution assays					
Endocrine activity	CALUX	Estrogen, androgen, AhR, thyroid, PPARγ2 receptor activation					
activity	ELISA	H295R Steroidogenesis assay (hormone production)					
	ToxInsight	Histone γH2Ax phophorylation					
0 (' - ' (ToxInsight	Micronucleus assay					
Genotoxicity	Bluescreen	Gadd45α expression, Ames test (mutagenicity)					
	p53						
	ToxInsight	Organelle health (mitochondrial markers)					
Cytotoxicity		Cell proliferation (DNA, Br-deoxyuridine incorporation) and cell death (apoptosis, caspase 3, p53)					
	Xenometrix	Cytotoxicity screening : protein synthesis, lysosomial and nuclear membrane integrity biomarkers					

- > Speed, convenience, high content, robustness, relevance
- ➤ Ability to cover several mechanisms/modes of action

Case studies: Application of the biodetection tool battery

Case study 1: plastic material in development Identifying responsible compounds

Material bioactivity:

- Migration simulation assay
- In vitro battery:
 - toxicity
 - endocrine
 - genotoxicity

Estrogenic activity

Analytical profile

Information on material: ingredients, recipes

Verify in vitro:

- effect(s)
- dose-response

Comparison with analytical data:

concordance

List substances

substance with known endocrine activity:

4-nonylphenol

Case study 2: presence of azaarenes in food Comparing toxicity to known analogues

2858

J. Sep. Sci. 2012, 35, 2858-2865

Case study:

Arkadiusz Szterk¹ Marek Roszko² Adam Cybulski¹

Department of Functional Food and Commodities, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Research Article

Determination of azaarenes in oils using the LC-APCI-MS/MS technique: New environmental toxicant in food oils

Background: PAH-nitro derivatives:

- Structural and sources similarities with PAHs but less well characterized
- Very limited information on levels in food and exposure (e.g. oils)
- Toxicological data:
 - » Limited toxicological data
 - » Evidences suggest stronger toxicity as compare to PAH
 - » Further information is needed to define the toxicity of PANHs as compared to PAHs

Known PAHs mode of action

- → Reference compound: Benzo(a)pyrene
- Genotoxic after metabolic activation: Protein and DNAadducts formation
- Potent Aryl hydrocarbon Receptor (AhR) activator
- Other nuclear receptors also involved (e.g. ER)

Tested Compounds

	Anthracene	Acridine Acr		
3 rings	Anth			
Structure				
N° CAS	120-12-7	260-94-6		
Molecular Mass (g/mol)	178.23	179.22		
Log Kow	4.45	3.40		
Stock Concentration (mM)	50	500		

CONTROL compound

<u>.</u> .	Benzo(a)pyrene				
5 rings	BaP				
Structure					
N° CAS	50-32-8				
Molecular Mass (g/mol)	252.3				
Log Kow	6.00				
Stock Concentration (mM)	50				

	Benz(a)anthracene	Benz(a)acridine	Benz(c)acridine		
4 rings	BaAnth	BaAcr	BcAcr		
Structure					
N° CAS	56-55-3	225-11-6	225-51-4		
Molecular Mass (g/mol)	229.29	229.29	229.28		
Log Kow	5.79	4.48	4.61		
Stock Concentration (mM)	100	200	200		

	Dibenz(a,h)anthracene	Dibenz(a,h)acridine	Dibenz(a,j)acridine	Dibenz(c,h)acridine DiBchAcr		
5 rings	DiBahAnth	DiBahAcr	DiBajAcr			
Structure	d2000	grif	900			
N° CAS	53-70-3	226-36-8	224-42-0	224-53-3		
Molecular Mass (g/mol)	278.35	279.35	279.35	279.35		
Log Kow	6.75	5.73	5.63	6.45		
Stock Concentration (mM)	12.5	10	50	50		

Data summary

	In vitro bioassays summary (μM)													
Sample			Nuclear receptors				Genotoxicity				Cytotoxicity			
Туре	Rings	Compound	Structure	AhR	Erα	Anti ER	AR	Anti AR	Gadd45a (+S9)	Gadd45a (-S9)	H2AX	p53	(+S9)	(-S9)
PANH		Dibenz(ah)acridine	£	0.0004	-	16.58	-	-	80	-	5.0		-	-
		Dibenz(ch)acridine		0.001	-	•	-	1.19	-	-	1.6	17	-	118
РАН	5R	ВаР		0.002	0.97	ı	-	0.63	12.5	-	0.1	10	11	-
PANH		Dibenz(aj)acridine		0.0025	-	-	-	9.56	-	-	-	50	-	41
РАН		Dibenz(ah)anthracene	6	0.01	-	-	-	49.00	-	-	0.1	33		-
РАН		Benz(a)anthracene		0.002	3.03	-	-	0.22	-	-	100	33	-	-
PANH	4R	Benz(c)acridine		0.20	35.00	-	-	0.82	-	800			257	-
1 21311		Benz(a)acridine		1.42	23.00	-	-	1.91	200	400	200	200	31	203
РАН	3R	Anthracene		-	15.50	-	-	0.97	-	-			-	-
PANH		Acridine		-	142.00	-	-	3.40	-	400		167	83	-
				EC ₅₀			LPC (lowest (+) concentration)				CD _{40%}			

Weak activator

Stronger activator

General summary

Reference compound: BaP

- Results in line with the literature: cytotoxic, genotoxic and nuclear receptors activator: AhR, ERα and anti-AR
- Confirm the role of metabolic activation
- Battery of bioassays works appropriately

Receptor-mediated effect

- AhR: Most sensitive parameter (2-3 orders of magnitude)
- Correlation between AhR activity and number of rings
- Decreased activation of ER α receptor with the number of rings (less potent AhR)
- Anti-AR effect with all compounds (except Dibenz(ch)acridine)

Other parameters

- No correlation between AhR activation and other parameters
- No consistent trends between PAHs vs PANHs regarding cytotoxicity and genotoxicity potency
- Some evidences of higher genotoxicity and cytotoxicity induction by the 5-rings
 PAHs and its derivatives
- No good consistency across genotoxicity tests

Conclusions case study 2

Compared to PAHs, azaarenes are likely to have similar toxicological profile

However, they may not bring additional risk burden since exposure seems much lower than for PAHs

Cell culture-based *in vitro* battery summary

- Receptor-mediated effect model: CALUX model is a sensitive test for receptor activation studies
 - Need to address the role of metabolic activation on nuclear receptors activation parameter
- Genotoxicity

Optimization of the genotoxicity assessment is needed to address consistently:

- sensitivity
- specificity
- metabolic activation
- optimal cell model
- Data interpretation for decision making: cut-off values and/or trigger values needed
- In vitro toxicology issues for decision making, need to be address through a multidisciplinary approach

Acknowledgements

Chemical Food Safety Group Nestlé Research Center:

- Benoît Schilter
- Myriam Coulet
- Master student: Fanny Minetto from the University of Brest (France)
- Julie Mollergues
- Dominique Piguet
- Helia Latado
- Patrick Serrant
- Claudine Bezençon

BioDetection System (BDS Amsterdam)

- Harrie Besselink
- Peter Behnisch

THANK YOU FOR YOUR ATTENTION

Questions or Comments?