

New and existing biodetectors at BioDetection Systems; state-of-the-art

Bart van der Burg – BioDetection Systems BV Department of Innovation

bart.van.der.burg@bds.nl

- Intro basic CALUX Quantitative High Throughput Assays
- Applications in safety assessment
- Specific requirements for different applications
- Identification of nutraceuticals

- Intro basic CALUX Quantitative High Throughput Assays
- Applications in safety assessment
- Specific requirements for different applications
- Identification of nutraceuticals

- "Tip of the iceberg" is measured
- Fast, cheap and integrative methods needed: bioassays

Measuring toxicity of chemicals/mixtures: bioassays are only option

Opportunity: cellular pathway-based approach

Hanahan and Weinberg 2011, Cell 144(5):646-74

- Cancer diagnosis: pathway analysis is increasingly used in complementing and replacing conventional pathology
- Toxicology is next in line

CALUX® mechanism (AOP)-based reporter gene assays

Use pathway selective assays for Adverse Outcome (AOP) linkage and to assess complex mixture effects

Legler et al (1999) Toxicological Sciences 48, 55-66.

CALUX High Throughput Screening panel

name	basal line	species	pathway	reference compound	key reference		
DR CALUX	H4IIE/HepG2	Rat/human	dioxin receptor activation	2,3,7,8-TCDD	Van Vugt 2013/Buddin 2018		
PAH CALUX	H4IIE	rat	dioxin receptor activation	benzo-a-pyrene	Pieterse 2013		
ER CALUX	T47D	human	estrogen receptor activation	17β-estradiol	Legler 1999		
ERalpha CALUX	U2OS	human	estrogen receptor α activation	17β-estradiol	Sonneveld 2005 OECD 2013		

- Sensitive, selective, quantitative assays for major hormonal systems and cell signalling pathways
- Addresses major types of toxicity (general toxicity, genotoxicity/carcinogenicity, endocrine disruption, reproduction, developmental tox, etc)
- More than 50 assays (approx. 30 assays in regular use in panel)
- Data on >500 chemicals

LXR CALUX	U2OS	human	LXR activation	GW3965	unpublished
kappaB CALUX	U2OS	human	NFkB pathway activation	TPA	Piersma 2013, Van der Burg 2013
P21 CALUX	U2OS	human	transcription of p21 inhibitor of cell cycle progression	actinomycin D	Piersma 2013, Van der Burg 2013
Nrf2 CALUX	U2OS	human	activation of the Nrf2 pathway	curcumin	Van der Linden 2014
P53 CALUX	U2OS	human	p53-dependent pathway activation	actinomycin D	Van der Linden 2014
genotox CALUX	U2OS	human	p53-dependent pathway activation +/-S9	cyclophosphamide	Van der Linden 2014
TCF CALUX	U2OS	human	wnt/TCF pathway activation	lithium chloride	Piersma 2013, Van der Burg 2013
AP1 CALUX	U2OS	human	AP1 pathway activation	TPA	Piersma 2013, Van der Burg 2013
HIF1alpha CALUX	U2OS	human	Hif1alpha pathway activation	cobaltous chloride	Piersma 2013, Van der Burg 2013
ER stress CALUX	U2OS	human	ERSE activation leading to endoplasmic reticulum stress	tunicamycin	Piersma 2013, Van der Burg 2013

- OECD 2016: ERalpha CALUX for estrogenic/antiestrogenic EDCs included in TG455
- ECVAM (ongoing) AR CALUX validation and OECD guideline development for androgens/antiandrogens
- OECD (ongoing): Introducing metabolic steps in the ERα CALUX transactivation bioassay.
- In preparation: validation thyroid interference panel
- ISO (2016) standard for waste-water testing using ERalpha CALUX
- Establishment of normal- and trigger values
- ISO17025 accreditation

Why not more assays?

- Toxcast: many assays per pathway
- Our approach: One selective, validated assay with minimal false positives

1 CALUX	8 TOXCAST	KEFEKENCE
	4.05.00	

1

		_	111
7alpha-Ethinylestradiol	-1,2E+01	1,0E+00	6
neso-Hexestrol	-1,2E+01	9,9E-01	6
7beta-Estradiol	-1,2E+01	9,4E-01	6
Diethylstilbestrol	-1,1E+01	9,4E-01	6
.7alpha-Estradiol	-9,8E+00	1,1E+00	4
strone	-9,5E+00	8,1E-01	4
I-Octylphenol	-6,2E+00	1,2E-01	4
Genistein	-8,0E+00	5,4E-01	2
alpha-Dihydrotestosterone	-7,5E+00	4,0E-01	2
Bisphenol A	-7,3E+00	4,5E-01	2
I-Cumylphenol	-7,0E+00	3,8E-01	2
p,p'-DDT	-6,9E+00	3,9E-01	2
(epone	-6,6E+00	1,7E-01	2
Butyl benzyl phthalate	-6,4E+00	1,8E-01	1
Methoxychlor	-6,2E+00	2,5E-01	1
(aempferol	-6,1E+00	2,5E-01	1
7-Methyltestosterone	-6,0E+00	5,0E-01	1
enarimol	-5,7E+00	1,1E-01	1
thylparaben	-5,4E+00	8,6E-02	1
p'-DDE	-5,3E+00	6,8E-02	1
Dicofol	-5,3E+00	0,0E+00	1
Dibutyl phthalate	-5,2E+00	2,7E-02	1
I-Nonylphenol	-5,1E+00	8,8E-02	1
)i(2-ethylhexyl) phthalate	-4,0E+00	0,0E+00	1
Atrazine	-4,5E+00	0,0E+00	0
Haloperidol	0,0E+00	6,0E-03	0
pironolactone	0,0E+00	2,8E-04	0
Corticosterone	0,0E+00	5,6E-05	0
lutamide	0,0E+00	0,0E+00	0
Procymidone	0,0E+00	0,0E+00	0
inuron	0,0E+00	0,0E+00	0
Reserpine	0,0E+00	0,0E+00	0
(etoconazole	0.0F+00	0.0F+00	0

- Intro basic CALUX Quantitative High Throughput Assays
- Applications in safety assessment
- Specific requirements for different applications
- Identification of nutraceuticals

CALUX assays as analytical tool of mixtures

Indirect: Chemical analytical method

```
•Compound 1:
                  concentration 1
                                    •x TEF1 =
                                               •TEQ1
•Compound 2:
                                    •x TEF2 =
                                               •TEQ2
                  concentration 2
•Compound 3:
                  concentration 3
                                    •x TEF3 =
                                               •TEQ3
•Compound n:
                                               •TEQn
                  concentration n
                                    •x TEFn =
•Total dioxin toxicity of mixture:
                                             SumTEQ
```

• Direct: Biological (CALUX®) method

Direct measurement of TEQ value of sample

Green Chemistry

Application in read across, safe design/green chemical identification

compound	Cytotox10%	Cytotox50%	ERa	ERa-anti	ERb ▶	ERb-anti	AR ▼	AR-anti	PR ▼	PR-anti	GR ▼	GR-anti	TRb ■	RAR	PPARa	PPARg -	DR ▼	PAH	Hif1a 🔽	TCF V	AP1	ESRE	NFkB 🔽	Nrf2	p21	p53
bisphenol A	-4	-3.7	-7.3		-6.8			-6.8		-5.5																
Butyl benzyl phthalate	-3.9	-3.5	-5.7					-6.1		-5.7							-3.7									
Di(n-hexyl)phthalate	-3.5		-5					-5		-5.5							-4									
Dibutylphthalate		-4	-5.2					-5.5		-5.5																
Diethylphthalate	-3.5	-3.0						-5																		
Diisobutyl phthalate	4.5	-4	-5.7					-6		-6																
Nonvlohenol		4.7	-5.1		-5.6			-6.5		-5.5																
DCA																										
(•	-					-									•	•	•	

Case study: CALUX panel identifies FDCA as a potentially non-toxic alternative to current plastic ingredients/building blocks

Cases that show applicability to different chemical classess

Comparable "read-across" methods are increasingly used in chemical safety assessments; used in approx. 30% reproductive tox dossiers (100-1000TPA) in REACH (ECHA 2014)

Can a test battery predict complex toxicity (reproductive toxicity)?

Chem

Can HTS pathway-based assays be used to predict toxicity?

tests

Various validation studies: predictivity panel/subsets

Predictions range between 75-100% (published data/in press)

Validation: what level of predictivity to expect?

*Hartung T. Nature 2009, 460:208-212.

- Intro basic CALUX Quantitative High Throughput Assays
- Applications in safety assessment
- Specific requirements for different applications
- Identification of nutraceuticals

Risk assessment: extrapolation and interpretation of data

SIMPLY EXPLAINED

CANARY IN THE COAL MINE

Risk assessment: extrapolation and interpretation of data

Predict toxicity:

"dynamics"

+ kinetics

Input required:

- fraction unbound (fu)
- hepatic clearance (CLh,int)
- intestinal permeability (Papp)
- logP, ionization
- Default assumptions: renal clearnce (CLr)

For mixtures: in vitro methods needed

activation/inactivation

Compound	EF	Rα CALUX PC1	0 (M)		
	No S9	S9 Phase I	S9 Phase I+II		
meso-hexestrol	2.4E-13	2.6E-13	4.7E-12		
17α-ethinylestradiol	6.3E-13	1.0E-12	1.0E-12		
17β-estradiol	2.2E-12	2.6E-12	5.8E-12		
diethylstilbestrol	6.0E-12	3.2E-11	3.2E-11		
norethynodrel	2.0E-10	4.0E-11	1.6E-10		
17α-estradiol	2.5E-10	5.6E-10	6.4E-10		
coumestrol	2.1E-09	2.1E-09	3.2E-09		
tamoxifen	1.6E-08*	4.0E-09*	4.0E-09*		
bisphenol A	2.0E-08	1.6E-08	3.2E-06		
genistein	3.4E-08	3.7E-08	1.4E-07		
4-tert-octylphenol	4.3E-08	1.0E-06	NA (>1E-06)		
19-nortestosterone	6.1E-08	8.5E-09	1.4E-08		
kepone	8.4E-08 6.3E-08		6.3E-08		
4-cumylphenol	1.8E-07	6.3E-07	6.9E-06		
butylbenzyl phthalate	5.0E-07	2.5E-05	4.0E-05		
p,p'-methoxychlor	6.3E-07	2.0E-08	2.5E-07		
testosterone	6.3E-07	2.5E-07	4.0E-07		
kaempferol	7.6E-07	1.0E-06	6.4E-06		
ethyl paraben	5.5E-06	3.2E-05	3.8E-05		
corticosterone	NA (>1E-04)	NA (>1E-04)	NA (>1E-04)		
linuron	NA (>1E-04)	3.2E-06	1.0E-05		
spironolactone	NA (>1E-04)	1.0E-05	NA (>1E-04)		
ketoconazole	NA (>1E-04)	4.0E-07	1.3E-06		
reserpine	NA (>1E-04)	NA (>1E-04)	NA (>1E-04)		
flutamide	NA (>1E-05)	3.2E-06	NA (>1E-05)		
atrazine	NA (>3E-05)	1.3E-05	2.2E-05		
vinclozolin	NA (>3E-05)	3.2E-06	8.5E-06		

potency

	-				
Compound	no	v	S9 Phase I	v	S9 Phase I+II 🔻
meso-hexestrol	-12.6		-12.6		-11.3
17α-ethinylestradiol	-12.2		-12.0		-12.0
17β-estradiol	-11.7		-11.6		-11.2
diethylstilbestrol	-11.2		-10.5		-10.5
norethynodrel	-9.7		-10.4		-9.8
17α-estradiol	-9.6		-9.3		-9.2
coumestrol	-8.7		-8.7		-8.5
bisphenol A	-7.7		-7.8		-5.5
genistein	-7.5		-7.4		-6.9
4-tert-octylphenol	-7.4		-6.0		
19-nortestosterone	-7.2		-8.1		-7.9
kepone	-7.1		-7.2		-7.2
4-cumylphenol	-6.7		-6.2		-5.2
butylbenzyl phthalate	-6.3				-4.4
p,p'-methoxychlor	-6.2		-7.7		-6.6
testosterone	-6.2		-6.6		-6.4
kaempferol	-6.1		-6.0		-5.2
ethyl paraben	-5.3		-4.5		-4.4
corticosterone					
linuron			-5.5		-5.0
spironolactone			-5.0		
ketoconazole			-6.4		-5.9
reserpine					
flutamide			-5.5		
atrazine					-4.7
vinclozolin			-5.5		

Use Adverse Outcome Pathways to link lower level tests to adversities

- Adverse Outcome Pathway (AOP): chain of linked **key events** at different levels of biological organisation that lead to an **adverse outcome**.
- Central elements to support chemical risk assessment based on mechanistic reasoning.

http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm

AOP example: adverse effects by estrogens

OECD; conceptual framework with many tests

OECD Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals

Note: Document prepared by the Secretariat of the Test Guidelines Programme based on the agreement reached at the 6th Meeting of the EDTA Task Force

Level 1

Sorting & prioritization based upon existing information

- · Physical & chemical properties, e.g., MW, reactivity, volatility, biodegradability
- · Human & environmental exposure, e.g., production volume, release, use patterns
- · Hazard, e.g., available toxicological data

Level 2

In vitro assays providing mechanistic data

- •ER, AR, TR receptor binding affinity
- Transcriptional activation
- Aromatase & Steroidogenesis in vitro
- Aryl hydrocarbon receptor recognition/binding
- ·High Through Put Prescreens
- Thyroid function
- Fish hepatocyte VTG assay
- QSARs; Others (as appropriate)

Level 3

In vivo assays providing data about single endocrine Mechanisms and effects

- Uterotrophic Assay (estrogenic related)
- Hershberger Assay (androgenic related)
- Non-receptor mediated hormone function
- ·Fish VTG assay (estrogenic related)
- Others (e.g. thyroid)

Level 4

In vivo assays providing data about multiple endocrine mechanisms and effects

- Enhanced OECD 407 (endpoints based on endocrine mechanisms)
- Male and female pubertal assays
- Adult intact male assay

- ·Fish gonadal histopathology assay
- Frog metamorphosis assay

Level 5

In vivo assays providing data on effects from endocrine & other mechanisms

- 1-generation assay (TG415 enhanced)
- 2-generation assay (TG416 enhanced)
- Reproductive screening (TG421 enhanced)
- Partial and full life cycle assays in fish, birds, amphibians & invertebrates (development & reproduction)
- Combined 28 day/reproduction screening test (TG 422 enhanced)

Many estrogen target tissues

• Dozens of AOPs needed for estrogens alone?

Can a test for a Molecular Initiating event predict an adverse outcome?

OECD Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals

Note: Document prepared by the Secretariat of the Test Guidelines Programme based on the agreement reached at the 6th Meeting of the EDTA Task Force

Level 1

Sorting & prioritization based upon existing information

- · Physical & chemical properties, e.g., MW, reactivity, volatility, biodegradability
- · Human & environmental exposure, e.g., production volume, release, use patterns
- Hazard, e.g., available toxicological data

Level 2

In vitro assays providing mechanistic data

- ·ER, AR, TR receptor binding affinity
- Transcriptional activation
- Aromatase & Steroidogenesis in vitro
- Aryl hydrocarbon receptor recognition/binding
- High Through Put Prescreens
- Thyroid function
- Fish hepatocyte VTG assay
- QSARs; Others (as appropriate)

Level 3

In vivo assays providing data about single endocrine Mechanisms and effects

- Uterotrophic Assay (estrogenic related)
- Hershberger Assay (androgenic related)
- Non-receptor mediated hormone function
- · Fish VTG assay (estrogenic related)
- ·Others (e.g. thyroid)

Level 4

In vivo assays providing data about multiple endocrine mechanisms and effects

- Enhanced OECD 407 (endpoints based on endocrine mechanisms)
- Male and female pubertal assays
- Adult intact male assay

- ·Fish gonadal histopathology
- ·Frog metamorphosis assay

Level 5

In vivo assays providing data on effects from endocrine & other mechanisms

- •1-generation assay (TG415 enhanced)
- 2-generation assay (TG416 enhanced)
- Reproductive screening (TG421 enhanced)
- Partial and full life cycle assays in fish, birds, amphibians & invertebrates
- (development & reproduction)
- Combined 28 day/reproduction screening test (TG 422 enhanced)

What is needed for and EDC panel?

OECD Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals

Note: Document prepared by the Secretariat of the Test Guidelines Programme based on the agreement reached at the 6th Meeting of the EDTA Task Force

Level 1

Sorting & prioritization based upon existing information

- Physical & chemical properties, e.g., MW, reactivity, volatility, biodegradability
- ·Human & environmental exposure, e.g., production volume, release, use patterns
- · Hazard, e.g., available toxicological data

Level 2

•ER, AR, TR receptor binding affinity

·High Through Put Prescreens

Estrogen, Androgen, Thyroid, Steroidogenesis (EATS)

In vivo assays providing data about sing

- Aryl hydrocarbon receptor recognition/binding
 QSARs; Others (as appropriate)
- In vivo assays providing data about single endocrine Mechanisms and effects
- Hershberger Assay (androgenic related)
- •Non-receptor mediated hormone function
- related)
- ·Others (e.g. thyroid)

Level 4

In vivo assays providing data about multiple endocrine mechanisms and effects

- Enhanced OECD 407 (endpoints based on endocrine mechanisms)
- ·Male and female pubertal assays
- Adult intact male assay

- Fish gonadal histopathology assay
- Frog metamorphosis assay

Level 5

In vivo assays providing data on effects from endocrine & other mechanisms

- ·1-generation assay (TG415 enhanced)
- •2-generation assay (TG416 enhanced)
- Reproductive screening (TG421 enhanced)
- Partial and full life cycle assays in fish, birds, amphibians & invertebrates (development & reproduction)
- Combined 28 day/reproduction screening test (TG 422 enhanced)

EDC (EATS) panel: CALUX in combination with different assay types

- E: (anti)Estrogens: ERalpha CALUX (ER CALUX, ERbeta CALUX) (OECD TG455)
- A: (anti)Androgens: AR CALUX
 (ECVAM validation and OECD TG guideline development)
- T: Thyroid interference: TRbeta CALUX, TTR* and TPO assay (TG in preparation)
- S: H295R steroidogenesis, coupled to CALUX read-out (OECD 456)
- Phase 1 and 2 metabolic steps in EDC CALUX transactivation bioassays (TG in preparation)
- Others, if needed: PPARalpha, -beta, -gamma CALUX, PR CALUX, GR CALUX, etc.

Specificity assays allows to measure exposure in humans

- Pathway specific bioassays are valuable for human monitoring
- E.g. associations between DR-CALUX responses and:

- markers of childhood leukemia
- low birth weight
- shorter gestational time
- changes in AGD in young boys
- immune system functions later in life
- Derivation of thresholds /"trigger values" possible

- Intro basic CALUX Quantitative High Throughput Assays
- Applications in safety assessment
- Specific requirements for different applications
- Identification of nutraceuticals

All chemicals are toxic, depending on the dose

Chemical	LD50 (mg/kg, orally to rat)
Sodium Chloride	3750
Aspirin	1750
Ethanol	1000
Morphine	500
Caffeine	200
Heroin	150
Lead	20
Cocaine	18
Parathion	13
Aflatoxin	10
Sodium cyanide	10
Nicotine	2
Strychnine	0.8
Sarin	0.4
Batrachotoxin	0.002
Tetanus toxin	0.000005
Botulinum toxin	0.00000003

Some chemicals are beneficial, but this depends on the dose

At low doses "toxic" chemicals can be beneficial: e.g. digoxin, aspirin, other secondary plant metabolites

Biomass valuation: screening for active ingredients

Biomass valuation and safety assessment

One farm: 720 tons of waste per year

Identification of modulators of fat metabolism

More than 1.4 billion adults were overweight in 2008, and more than half a billion obese

		PPARd	PPARg	PPARa	
		(ng L-165,041 eq./g	(ng Rosiglitazone eq./g	(ng GW7647-eq./g	
A.		dry weight)	dry weight)	dry weight)	
	Control	0	0	0	
	WBM	1696	53	0	
	Oyster	2565	2532	613	
	Shiitake	2377	841	334	
and a	LC	3326	2186	182	
-00	FMD12	2624	807	106	
	FMD16	2875	114	0	
	FPT31	3422	14	188	
	FBV334	490	718	0	
	DHC	2508	1304	0	
	нн	1266	2884	158	
3 -	LS	0	578	328	
	NT	1071	440	0	
	CD	1220	2542	0	
	CX	0	1677	0	
	TTN	0	0	0	

Equivalent units of PPAR activities

Generic scheme for bioanalysis

- Specific CALUX high throughput panel of assays for EDCs
- Very good predictions of adversity (not the phenotype)
- Test batteries can be relatively simple when using specific assays
- Metabolic steps, pharmacokinetic modeling can improve predictions
- Linkage to regulations: OECD/ECVAM/ISO validation, incorporation in guidelines, AOP linkage
- Applicable for read-across, safe design/green chemistry
- Specially designed and very suitable for safety of complex mixtures

Support & collaboration

High throughput toxicity screen	Human health	Water, environment	Biobased, nutraceuticals
ReProTect		<i>META</i> EXPLORE	ൗ ⊏⊘PlantLIBRA
ZonMw	New Generis Newborns and Genotoxic exposure risks	TECHNEAU	ecogenomics
Chem Creen	Netherlands Toxicogenomics CENTRE	S)DEAAEALI	BE-Basic
chenycreen		DEMEAU	RESOIVE CREATING SAFE AND RENEWABLE SOLVENTS
[::::] EUTOXRISK	PROTECTE	⇒ AquaNES	Fungus chain