

The application of endocrine in vitro and in situ based bioassays

a comparison at a German WWTP

Yvonne Müller, Aliaksandra Shuliakevich, Sabrina Schiwy, Henner Hollert 14.09.2018

The DemO₃AC Project

- Large-scale ozonation plant for treatment of wastewater
- Evaluation of ozonation concerning influence on receiving stream
 - Improvement of water quality via reduction of anthropogenic residual contaminations
- Determination of the status quo before implementation of the large-scale ozonation plant (phase 1)
- Experiments on half-scale ozonation plant
- Construction of large-scale ozonation plant
- Determination of the status after implementation of the large-scale ozonation plant (phase 2)
- How is the water quality going to be improved by further reduction of trace contaminants?
 - Or do other factors have a higher impact on the water quality?

Study area

Wurm River

- W2: upstream ROB and WWTP
- W3: downstram ROB, upstream WWTP
- W4: directly downstream WWTP
- W5: ~ 2,5 km downstream WWTP

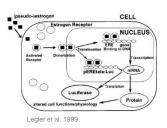
ROB = rain overflow basin WWTP = wastewater treatment plant

Yvonne Müller

Test methods

- Classical wastewater assessment.
 - Algae growth inhibition assay (DIN EN ISO 8692/ DIN 38412-33)
 - Acute daphnia immobilization assay (DIN EN ISO 6341)
 - Luminescent bacteria assay (DIN EN ISO 11348-1)
 - Fish embryo toxicity assay (DIN EN ISO 15088, OECD 236)
- Mechanism specific assays
 - L-YES assay (ISO/FDIS 19040-1:2018(E))
 - ERα CALUX® assay (ISO/FDIS 19040-3:2018(E))
 - H295R-S assay (OECD 456)
 - Ames fluctuation assay (ISO 11350:2012)
 - Micronucleus assay (DIN EN ISO 21427-2, OECD 487)
- In situ experiments
 - Gammarid feeding experiments
 - QuEChERS with gammarids
 - Reproduction assay with Potamopyrgus antipodarum (OECD 242)
 - Caging experiments with Oncorhynchus mykiss

Test methods


- Classical wastewater assessment.
 - Algae growth inhibition assay (DIN EN ISO 8692/ DIN 38412-33)
 - Acute daphnia immobilization assay (DIN EN ISO 6341)
 - Luminescent bacteria assay (DIN EN ISO 11348-1)
 - Fish embryo toxicity assay (DIN EN ISO 15088, OECD 236)
- Mechanism specific assays
 - L-YES assay (ISO/FDIS 19040-1:2018(E))
 - ERα CALUX® assay (ISO/FDIS 19040-3:2018(E))
 - H295R-S assay (OECD 456)
 - Ames fluctuation assay (ISO 11350:2012)
 - Micronucleus assay (DIN EN ISO 21427-2, OECD 487)
- In situ experiments
 - Gammarid feeding experiments
 - QuEChERS with gammarids
 - Reproduction assay with Potamopyrgus antipodarum (OECD 242)
 - Caging experiments with Oncorhynchus mykiss

Tests methods

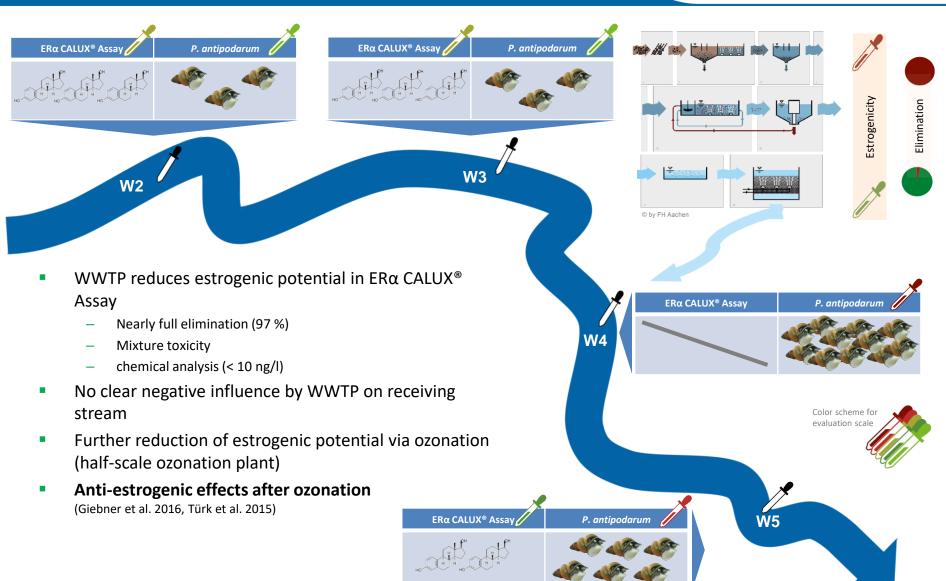
- Before implementation of the large-scale ozonation plant
- ERα CALUX® Assay
 - with extracts (0.1 % DMSO)
 - According to ISO guideline

Reproduction assay with Potamopyrgus antipodarum

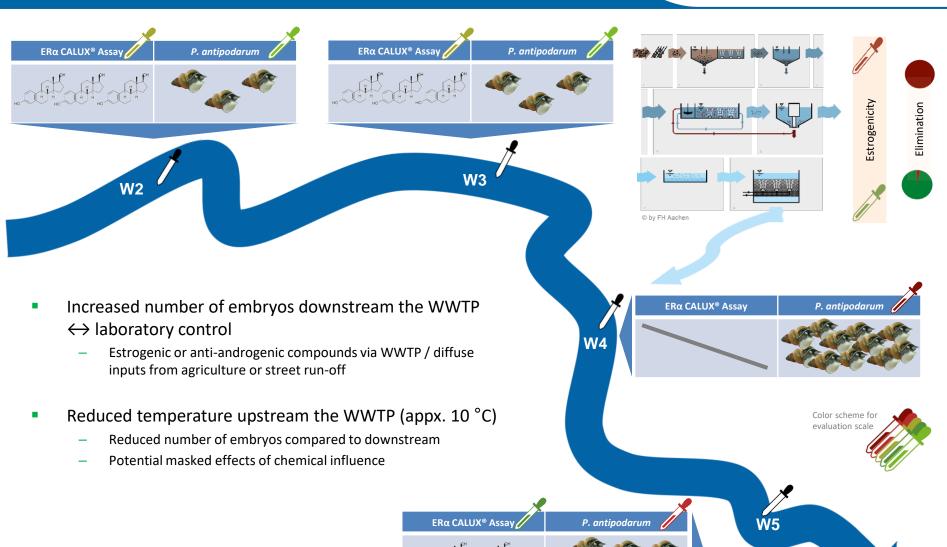

- Summer 2017
- Field study
- Temperature measurement in parallel
- PC: forskolin reduction of reproduction
- Based on OECD guideline

Cage with snails inside

http://depts.washington.edu/oldenlab/wordpr ess/wp-content/uploads/2013/03/Screen-Shot-2017-07-26-at-6.28.22-PM.jpq


Snail without shell

Results and Discussion



Results and Discussion

Results and Discussion

- No clear relation between in vitro and in situ experiments
 - In vitro → reduction of estrogenic potential
 - In situ → (significant) increased number of embryos per snail
 - In alignment with literature (Galluba et al. 2012)
- While conducting in situ experiments a multitude of different environmental factors can have an influence on the reproduction of snails (e.g. temperature reduction leads to a decreased number of embryos → temperature experiments) (Sieratowicz et al. 2011)
- Different water composition
- Estrogenic compounds might not be responsible for the increased embryo number but anti-androgenic compounds (Weiss et al. 2009, Schmitt et al. 2011)

DEM

Applicant:

Funding:

Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen

Project partners:

Providing cells:

BioDetection Systems

Thank you for your attention!

Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen

