Comparison of different genotoxicity tests *in vitro* for their sensitivity to detect toxic effects of micropollutants in water samples H. Bielak J. Richard A. Simon E. Dopp

AIMS OF THE STUDY

- Detection of micropollutants in water samples
- Toxicity evaluation using bioassays
- Comparison of four different genotoxicity tests for their sensitivities by testing chemicals that are commonly used as positive controls.
 - a) Alkaline Comet Assay b) Umu-Test

CONCLUSIONS

- Because of different endpoints there are different sensitivities for different genotoxicity tests
- Genotoxic effects were only detected in concentrated water samples (2.8x and 4x) by the receptor based p53 Calux[®]
- The p53 Calux[®] and Umu-test showed the lowest detectable effect concentrations
 - The p53 Calux[®] has been the most sensitive test to detect

c) Micronucleus-Test
 d) p53 Calux[®]

MATERIALS AND METHODS

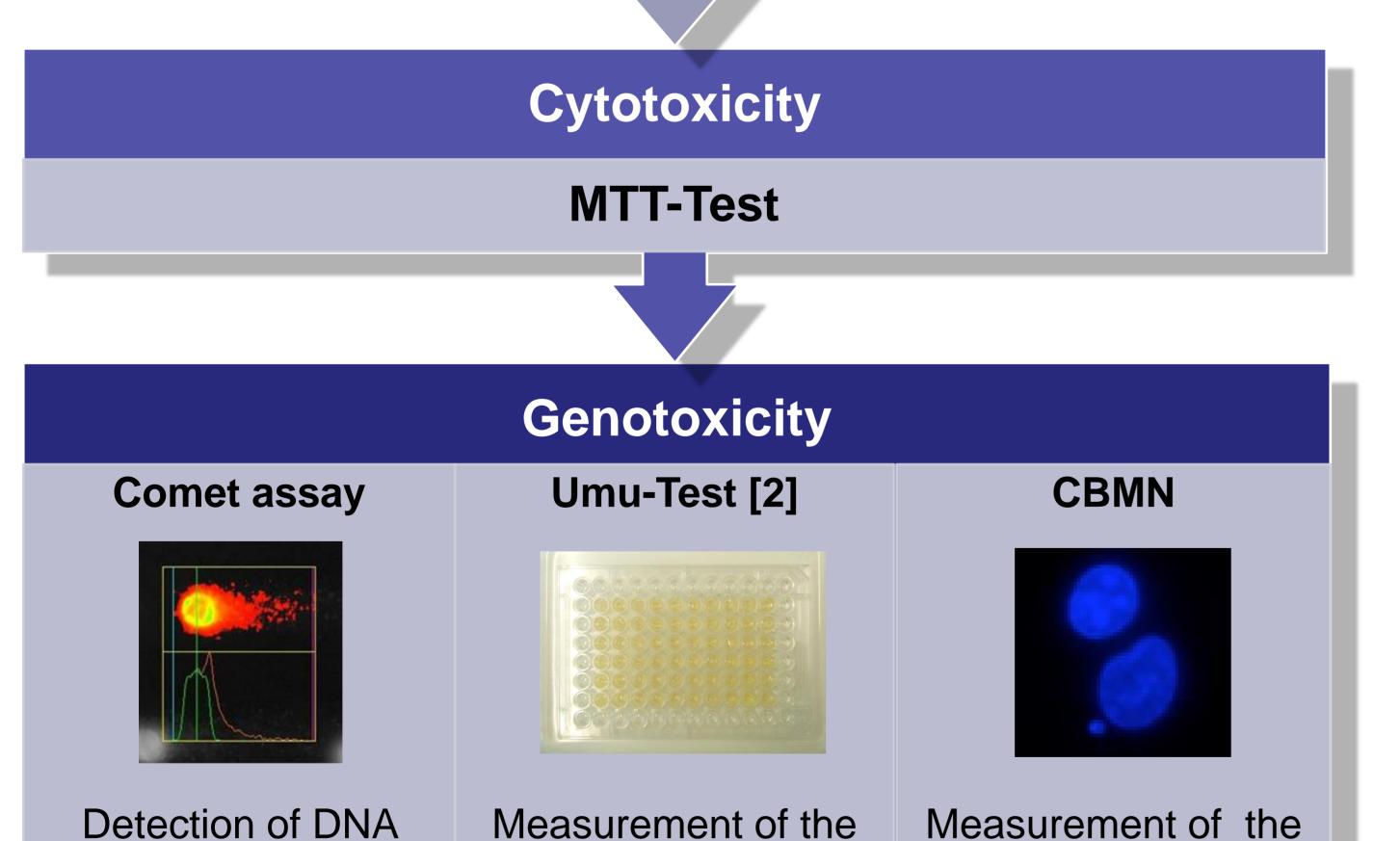
Exposition

- Cell lines: Chinese Hamster Ovary (CHO), Human Osteosarcoma Cells (U2-OS)
- Time: 24 h (ENU also 30 min)
- Substances and concentrations:

N-Ethyl-N-Nitrosourea (ENU):	0.01 – 1 mg/mL
4-Nitroquinoline 1-oxide (4-NQO):	0.006 – 60 µg/mL
Mitomycin C:	0.002 – 20 µg/mL
2-Aminoanthracene (2-AA):	0.01 ng/mL – 1 µg/mL
Surface water samples from two rivers 4x concentrated with n-Hexane [1]	s in NRW: Original, 2.8x and

Results

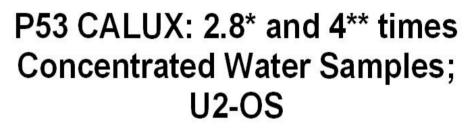
Comparison of the different test systems


Table 1: Comparison of the different test systems for their lowest detectable effect concentration. The following chemicals, usually used as positive controls, were used for the study: ENU = N-Ethyl-N-Nitro-sourea; 4-NQO = 4-Nitroquinoline 1-oxide; Mitomycin C, 2-AA = 2-Aminoantracene. Exposure time: 24h

	MTT-Test	Comet- Assay	Umu-Test	CBMN	P53 Calux [®]
ENU	100 µg/mL	100 µg/mL	-	No genotox up to 100 µg/mL	100 µg/mL
4-NQO	0.6 µg/mL	No genotox up to 0.06 µg/mL	-	No genotox up to 0.06 µg/mL	0.06 µg/mL
Mitomycin C	No cytotox up to 20 µg/mL	20 µg/mL	-	2 µg/mL	0.5 µg/mL
2-AA	1 µg/mL	No genotox up to 1 µg/mL	<0.1 µg/mL	No genotox up to 1 µg/mL	No genotox up to 0.1 µg/mL

Genotoxicity testing

Sample preparation


dilutions; concentrated water samples

The p53 Calux[®] and the Umu-Test were the most sensitive systems in this study with detectable effect concentrations < 0.1 μ g/mL.

Detection of genotoxicity in water samples

P53 CALUX: Original Water Samples; U2-OS

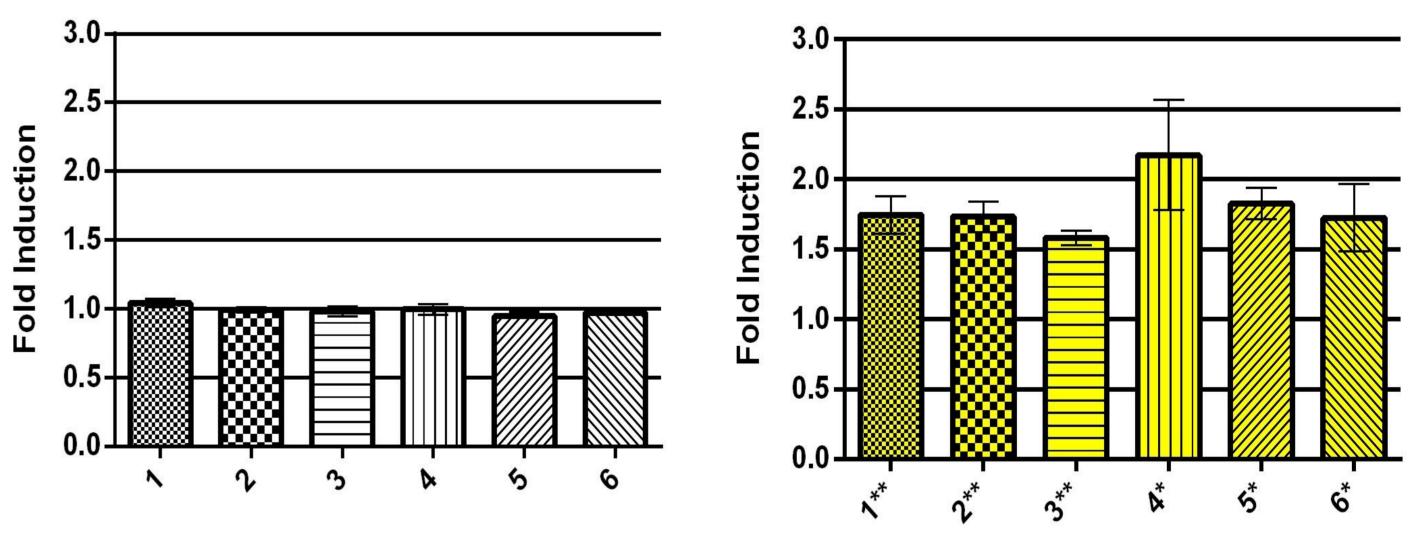


Fig. 1: Results of p53-Calux[®] with original water samples (left) and concentrated samples (right). Significant genotoxic effects are highlighted in yellow. [1]

No significant genotoxic effects of the tested water samples could be detected using the other test systems (data not shown).

References

double and single strand breaks using single cell gel electrophoresis. cell line: CHO

umuC gene activity.

strain: TA 1535 (plasmid pSK1002) of *Salmonella enterica* subsp. *enterica* potential to induce chromosome aberrations. cell line: CHO

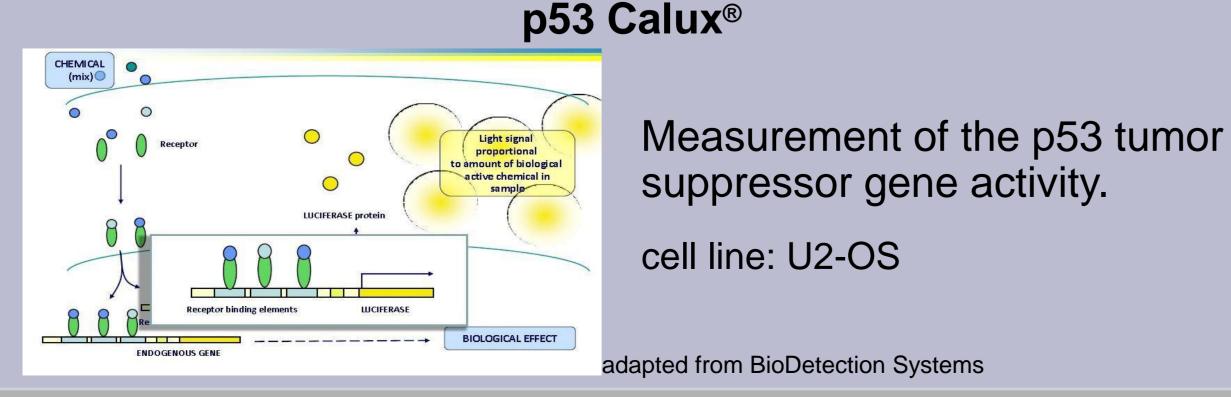
[1] I Curuia, *Master Thesis, University of Duisburg-Essen*, **2012**.
[2] Abwasserverordnung, *BGBI. I S.* 2585, **2009**.

NISSEN, WERTE, WASSER

Contact

IWW Rheinisch-Westfälisches Institut für Wasserforschung gemeinnützige GmbH Moritzstrasse 26 • D-45476 Mülheim an der Ruhr Helena Bielak • Tel.: +49-(0)208-40303-224 • <u>H.Bielak@iww-online.de</u>

Partners


ZWU ZENTRUM FÜR WASSER- UND UMWELTFORSCHUNG

NG Ruhrverband

UNIVERSITÄT

BioDetection Systems

