

Global Tour by CALUX – The last 365 days

Dr. Peter A. Behnisch

Director Bio Detection Systems bv Amsterdam

Global Tour 2015-2016

The Netherlands: Home produced eggs > 60% suspect in DR CALUX

Dutch Home Produced Eggs (Hoogenboom et al 2015): DR CALUX results

Hoogenboom et al (2015). DIOXIN 2015 oral presentation; Dioxins and PCBs in home produced egg. RIKILT report 2014-012

Germany: dl-PCBs in BIO eggs due to asbestos-cement fiber plates (ACP)

Table 2

Table 1

BEQ: and TEQ: values of PCDD/Fs and dl-PCBs found in three organic-farmed egg samples and one pooled chicken sample determined by a screening with the DR-CALUX® bioassay and confirmed by GC-HRMS.

Sample	PCDD/Fs	dl-PCBs	Total TEQ	Total BEQ
	(pg TEQ/g)	(pg TEQ/g)	(pg TEQ/g)	(pg BEQ/g)
Eggs 1	1,1	10.7	11.8	11 D
Eggs 2	0,72	5.7	6.4	6.2
Eggs 3	0,83	4.7	5,6	5,1
Chicken	0,57	10,6	11,2	11.D

TEQ-values of dI-PCBs and PCDD/Fs and concentrations of non-dI-PCBs for eggs and soil samples according to their distances to the ACP-d adding.

	Yardia	Yard1	Yard2	Yard3	Yard4	Reference area
Distance to ACP (m)	0	0-1	2-8	1-5	4	35
Eggs						
dI-PCB-TEQ	-	10.7	5,7	5,4	2.4	-
Non-dl-PCBs	-	30,500	17,200	15,600	8700	-
PCDD/Fs-TEQ	-	1.1	0.6	0.7	0,5	-
Soil						
dI-PCB-TEQ	70,2	42,6	7.8	9,8	3,9	0,45
non-dl-PCBs	157,000	104,000	23,700	30,400	10,600	1200
PCDD/Fs-TEQ	3,5	3.8	15	1.8	2.1	1.3

J Winkler High levels of dioxin-like PCBs in organic-farmed eggs: a case study. Env Intern 80, 72-78 (2015)

Balkan states:

free range chicken eggs from several industrial hot spots

Persistent in Free Range Chicken Organic Eggs from	5
Pollutants Countries	Z
	B
Bosnia and Herzegovina,	B
Montenegro and Serbia / 2014 – 2015	P
	S
	s

Sample	Locality	Country	PCDD/Fsand DL PCBs (DR CALUX)	PCDD/Fs (DR CALUX)
ZEN-15h	Gračanica (Zenica)	Bosnia and Herzegovina	12	8.8
BiH-E-01	Divkoviči I (Tuzla)	Bosnia and Herzegovina	11	5.6
BÌH- E -02	Divkoviči II (Tuzla)	Bosnia and Herzegovina	6.5	43
PLZ-E1+E2+E3	Plužine-Orah	Montenegro	0.98	034
SRB-ECC-02 and 03	Grabovac II (Obrenovac)	Serbia	7.0	Ş.2
SRB-ECC-04, 05 and 06	Ušće–Corjača–Cola Bara (Obrenovac)	Serbia	44	22

Million tons of steels per year is produced by ArcelorMittal in Zenka, Bosnia and Herzegovina. The levels of dust in air are 30 fold higher than in central London.

J Petrlik (Arnika) and P. Behnisch (BDS), Persistent Organic Pollutants (POPs)

in free range chicken eggs from hot spots in three Balkan states (2015)

China: free range chicken eggs from several industrial hot spots

Beihei – metallurgic plant: 5-7 x EU Max

Likeng – Waste incinerator: 3 x EU Max

Quihua – PVC plant: 2 x EU Max

Shenzhen – Waste incinerator: above 1 x EU Max

Wuhan – waste incinerator: 1-7 x EU Max, with high PBDD/Fs levels

"This publication is part of Strengthening the capacity of pollution victims and civil society organisations to increase chemical safety in China"

In courtesy by J Petrlik (Arnika)

- 800 soil samples were analysed by DR-CALUX
- with a mean dioxin level of 36 pg-BEQs/g.
- Soil dioxin-BEQs were higher in northern Taiwan (62 pg-BEQ/g) than in central, southern, and eastern Taiwan (8-25 pg-BEQ/g).
- Soil samples collected in northern Taiwan, and especially
 - in Bade City,
 - soils near industrial areas, and
 - soils with darker color may contain higher dioxin-BEQ level

Ding-Yan Lin et al. Int. J. Environ. Res. Public Health 2014, 11

Israel: Sediments and fish livers from the Mediterranean and Red Sea coasts analysed by DR CALUX

Table 3

Comparison of TEQ values evaluated by CALUX and HRGC/HRMS in sediment and fish extracts.

Sample or fish designation ^a	CALUX TEQ (pg/g ± SD) ^{b,e}	CALUX LOD (P8/8) ^c	CALUX LOQ (pg/g) ^d	HRGC/HRMS TEQ (pg/g±SD)*
1	48,9 ± 0,98	0,56	1,37	18,29
2	27.47±0.95	0.42	1.05	▶ 24
20	20,02 ± 1,24	0.8	2.1	16.06
F1	5,90 ± 0,56	0.50	0.70	7.53

- DR CALUX and chemical analysis did show similar results
- Only 1 of 22 sediment samples were above international guided level of 100 ng TEQ/kg
- Still 3 of 12 fish samples were above EU trigger value for fish of DR CALUX (4,3 pg BEQ/g)

Yana Yudkovski et al. Marine Pollution Bulletin 98 (2015) 295–300

Vietnam: monitoring of 200 residents by the Vietnam Military Medical University in Hanoi

BDS

CROSS CHECKING

Blinded 14 samples coded: Cross 1-14 sent from BDS, Armsterdam, The Netherlands for cross checking

Results at VMMU are consistent with the result from BDS

Dioxin levels in human plasma by DR CALUX

Chart of BEQ distribution of using DR CALUX (n =114)

Conclusion: Wide dynamic range of dioxin-BEQs (5.4- 210 BEQ/g fat)

Table 2. Dioxin levels by DR CALUX® method

Fig 2. Correlation between Dioxin and cortisol in wome

P, by Independent-Samples T Test

Dioxin level (by DR CALUX) in plasma of women in Bien Hoa and around the world

Papadopoulou E et al., 2013. Sci Total Eviron. Pederson M et al., 2010. Environ Int. Halldorsson TI et al., 2009. Environ Res.

Pham The Tai et al. DIOXIN 2015 conference

24

12

Table 2. Abnormal thyroid hormone levels by BEQ category

		High	Low	Total
		< 69.16 BEQ/g	> 69.16 BEQ/g	
		n (%)	n (%)	n (%)
TSH	Normal	8 (14.04%)	10 (17.54%)	18 (15,79)
	Abnormal	49 (85.96%)	47 (82.46%)	96 (84.21%)
	Total	57 (100%)	57 (100%)	114 (100%)
		OR=0.767, CI	: 0.279-2.111, χ ² =0,26	39, p=0.607
T3	Normal	18 (31.58%)	30 (52.63%)	48 (42.11%)
	Abnormal	39 (68.42%)	27 (47.37%)	66 (57.37%)
	Total	57 (100%)	57 (100%)	114 (100%)
		OR=2.407, CI	: 1.222-5.163, χ ² =0,5.	19, p=0.023
FT3	Normal	25 (43.86%)	32 (56.14%)	57 (50%)
	Abnormal	32 (56.14%)	25 (43.86%)	57 (50%)
	Total	57 (100%)	57 (100%)	114 (100%)
		OR=1.638, CI: 0.78	2-3.434, χ^2 =0.4298, p	=0.1898

Conclusions: Good correlation between T3 & dioxin levels

Australia: Endocrine activity in wastewater extracts during treatment

Grit

Changes in endocrine potency during wastewater treatment

Screening

WWTPA

Environ Toxicol Chem 9999, 2014 3

Sequencing

な Grontmij

1. (A-C) Schematic diagrams showing the main treatment processes at each waster treatment plant (WWTP). Processing of solids has been omitted for

Peter Bain et al. Environmental Toxicology and Chemistry, Vol. 33, No. 10, pp. 2297–2307, 2014

Primary

Endocrine activity in wastewater extracts during treatment (CALUX bioassays)

WWTP C

WWTP B

ERα

<u>Canada:</u>

Monitoring of water treatment plants (Prof. Yargeau's team)

YARGEAU LABORATORY Controlling Contaminants of Concern

Potential toxicity of influent and effluent (*i.e.*, untreated and treated water) to be determined using the cell-based bioassays

Approach applied to samples collected at three wastewater treatment plants.

	Treatment Type	Sample Type	Plant Capacity (m ³ /day)
WWTP 1	Secondary treatment, conventional activated sludge, non-nitrifying, continuous chlorination	effluent, influent	409,000
WWTP 2	Tertiary treatment, nitrifying, seasonal chlorination	effluent, influent	18,180
WWTP 3	Lagoon (secondary treatment equivalent) with seasonal discharge	effluent (pre- and post-addition of antifoaming agent), influent, surface water downstream of wastewater discharge	1,364

Estrogenic activity of wastewater samples collected at WWTP 1 and WWTP 2, expressed in terms of ng 17β -estradiol (E2) equivalents/L.

Was	tewater Treatmen	t Plant 1	Wastewater Treatment Plant 2			
SAMPLING DATE	SAMPLE TYPE	ng 17β-ESTRADIOL EQUIVALENTS ± %SD	SAMPLING DATE	SAMPLE TYPE	ng 17β-ESTRADIOL EQUIVALENTS ± %SD	
April 2014	Influent	28.4 ± 6		Influent	34.1 ± 14	
April, 2014	Effluent	1.3 ± 9	April, 2014	Effluent	13.7 ± 11	
May 2014	Influent	37.8 ± 15	N 00//	Influent	52.2 ± 2	
Way, 2014	Effluent	9.7 ± 10	Way, 2014	Effluent	3.1 ± 15	
luna 2014	Influent	71.6 ± 6	lune 2014	Influent	50.2 ± 4	
Julie, 2014	Effluent	3.8 ± 5	June, 2014	Effluent	2.6 ± 12	
Juby 2014	Influent	26.6 ± 13	hube 2011	Influent	36.4 ± 8	
July, 2014	Effluent	2.5 ± 4	July, 2014	Effluent	1.5 ± 6	
August, 2014	Influent	46.7 ± 12	August 2014	Influent	58.6 ± 4	
	Effluent	1.6 ± 10	August, 2014	Effluent	12.8 ± 10	

Effluent samples exhibit significantly lower estrogenic activity than the influent samples.

Results: ERa CALUX

Wastewater Treatment Plant 3					
SAMPLING DATE	SAMPLE TYPE	ng 17β-ESTRADIOL EQUIVALENTS ± %SD			
	Influent	172.9 ± 7			
May 2014	Effluent Pre-Antifoam	2.7 ± 5			
Way, 2014	Effluent Post-Antifoam	4.5 ± 3			
	Surface Water	4.9 ± 12			
	Influent	56.3 ± 8			
lune 201 <i>1</i>	Effluent Pre-Antifoam	1.1 ± 21 ^{*,†}			
June, 2014	Effluent Post-Antifoam	TBD			
	Surface Water	15.4 ± 6			
	Influent	214.7 ± 8			
	Effluent Pre-Antifoam	7.1 ± 15			
September, 2014 ⁺	Effluent Post-Antifoam	13.4 ± 20 [†]			
	Surface Water	17.1 ± 10			
	Influent	137.5 ± 13			
Sentember 2011 [‡]	Effluent Pre-Antifoam	TBD			
Gepteniner, 2014	Effluent Post-Antifoam	NOT PROVIDED			
	Surface Water	4.9 + 15			

Estrogenic activity of the wastewater samples collected at WWTP 3, expressed in terms of ng 17β-estradiol (E2) equivalents/L.

Once more, effluent samples exhibit significantly lower estrogenic activity than influent samples.

While influent estrogenic activity at WWTP 3 is higher than at WWTPs 1 and 2, effluent levels are comparable to other plants.

Germany: Falcon egg biomonitoring by CALUX panel

Figure 7. Sum of PCDD/F and dl-PCB levels in peregrine falcon eggs from BW measured by the semiquantitative (DR CALUX) and quantitative (GC/HRMS) methods.

Scale: pg (PCDD/F + dl-PCB-TEQ) or (BEQ)/g fat. Samples from 2004 to 2011 (n = 59).

Further hormone and obesity analysis results:

ER CALUX: 12-766 pg EEQ/g

AR CALUX: 8-491 mg FEQ/g

GR, TR or PPARg CALUX: < LOQ

Schwarz et al (2016). Peregrine falcon egg pollutants.TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY, 2016. http://dx.doi.org/10.1080/02772248.2015.1126717

Germany: Flame retardants PBDEs in Fish x cooking = PBDFs!

Each minute of heating 1 g salmon fillet spiked with 200 ng BDE-209 generated about 0.5 ‰ PBDFs confirmed by DR CALUX and GC/MS.

Fig. 2 Toxic response expressed in toxic equivalents per gram of fish in the DR CALUX bio-assay generated upon the heating of 1 g of fish fillet fortified with 200 ng of the PBDEs for different periods of time

Vetter et al. Formation of polybrominated dibenzofurans (PBDFs) after heating of a salmon sample spiked with decabromodiphenyl ether (BDE-209). Environ Sci Pollut Res 2014. 20

Switzerland: PAH CALUX to measure effects of oil spills

Immediate Ecotoxicological Effects of Short-Lived Oil Spill on Marine Biota

- Assess impact of small oil spills using bioassays (PAH CALUX, bacterial)
- Experimental spills at sea: high bioavailability and toxicity of dissolved oil within 24 h after the spills up to 8 m below the slicks.
- Selective decline of marine plankton is observed
- > Contrary to common thinking, even small spills have immediate adverse biological effects and their recurrent nature is likely to affect marine ecosystem functioning.

Brussard et al. Nature Communications, 2016, Apr 4;7:11206.

Global environment and human safety – knowing more about the unknown

- Bioassays can easily cover complex questions & cocktails from all over the world....
- They offer an easy and care taking answer to many daily questions
- POPs & EDCs...but also many other relevant types of toxicity
- Thanks for YOUR interest...
- YOUR questions are welcome..!!

