WATER CENTRE

CONSULTING – RESEARCH – TRAINING

Detection of estrogens in waste water treatment plant effluents

7th BioDetectors Conference Istanbul (08. November 2013)

Dr. Jessica Richard, Prof. Dr. Elke Dopp

IWW RHENISH-WESTPHALIAN INSTITUTE FOR WATER CONSULTING AND DEVELOPMENT SERVICES Institute affiliated with the UNIVERSITÄT DUISBURG ESSEN

Endocrine disruption

■ Chemicals of natural and synthetic origin found in surface waters might exhibit endocrine disruptive functions → structural similarity to hormones

US EPA: Endocrine disruption is a mode of action which potentially might lead to adverse effects

■ Hormonal effects at very low concentrations → test systems which are able to detect those effects

Research Project

Study of metabolite formation during the use of ozone in municipal waste water treatment plants

On behalf of the:

Ministry for Climate Protection, Environment, Agriculture, Nature Conservation and Consumer Protection of the German State of North Rhine-Westphalia (MKULNV) for the financial support of the project.

UNIVERSITÄT

Toxicity based identification scheme

Combination of various bioanalytical tests

In vitro test systems

- Oytotoxicity
- Estrogenicity
- Genotoxicity
- Mutagenicity

In vivo test systems

- Growth inhibition
- → Mortality
- > Embryotoxicity

Mass spectrometric detection and characterization

- → LC-MS
- → GC-MS
- → LC-(HR)MSⁿ

- structural characterization
- detection method

Methods

- T47D cells; exposure for 24 h
- Cytotoxicity (MTT Test) & Estrogenicity (ER Calux)
- **WWTP** samples: 3 municipal WWTPs, different O₃ conc.

Investigated municipal WWTP

WWTP Bad Sassendorf (Lippeverband)

12,000 PE.

 Post treatment dosing of ozone to the effluent of conventional biological treatment. Polishing pond.

WWTP Schwerte (Ruhrverband)

-50,000 PE.

 Consists of two separated lines. Ozone and/or powdered activated carbon are applied.
Recirculation process can be operated.

WWTP Duisburg-Vierlinden (Wirtschaftsbetriebe Duisburg AöR)

-30,000 PE.

Two parallel lines have been installed to compare ozone dosage by diffusor or by injector. The wastewater outline is fed to an additional biological stage (fluidised bed reactor).

Investigated municipal WWTP

WWTP Bad Sassendorf (Lippeverband)

■12,000 PE.

•Post treatment dosing of ozone to the effluent of conventional biological treatment. Polishing pond.

WWTP Schwerte (Ruhrverband)

•50,000 PE.

•Consists of two separated lines. Ozone and/or powdered activated carbon are applied. Recirculation process can be operated.

WWTP Duisburg-Vierlinden (Wirtschaftsbetriebe Duisburg AöR)

30,000 PE.

•Two parallel lines have been installed to compare ozone dosage by diffusor or by injector. The wastewater outline is fed to an additional biological stage (fluidised bed reactor).

WWW UNIVERSITÄT DU I S B U R G E S S E N

GC- and LC-MS Screening

WWTP Bad Sassendorf 5 mg/L Ozone

iuta

UNIVERSITÄT

10

D_U_I_S_B_U R G

Control sample* Before Ozonation After Ozonation After Maturation pond

fi.

0

* Internal Standard: ~ 120 substances

Estrogenicity WWTP Bad Sassendorf

Date of sampling	O ₃ z-spec.	Sample						
		original			extract			
		before O ₃	after O_3	maturation pond	before O ₃	after O_3	maturation pond	
02.08.2013	0.7	n.d.	n.d.	n.d.	0.5 ng/L	1.1 ng/L	cytotoxic	
16.08.2013	0.7	n.d.	n.d.	n.d.	0.3 ng/L	n.d.	9.9 ng/L	
30.08.2013	0.9	n.d.	n.d.	n.d.	cytotoxic	1.2 ng/L	5.8 ng/L	

* statistically significant compared to neg. control** statistically significant compared to previous treatment step

Estrogenicity WWTP Bad Sassendorf

* statistically significant compared to neg. control
** statistically significant compared to previous treatment step

UNIVERSITÄT

URG

Estrogenitcity WWTP Duisburg-Vierlinden

Date of sampling	O ₃ z-spec.	Sample							
		original				extract			
		before O ₃	diffusor	injector	biol. stage	before O ₃	diffusor	injector	biol. stage
13.09.2012	0.5	n.d.	n.d.	n.d.	n.d.	1.3 ng/L	n.d.	-	n.d.
20.09.2012	0.5	n.d.	n.d.	n.d.	n.d.	0.5 ng/L	n.d.	0.7 ng/L	0.3 ng/L
25.10.2012	0.7	n.d.	n.d.	n.d.	n.d.	7.1 ng/L	n.d.	n.d.	0.3 ng/L
31.10.2012	0.7	n.d.	n.d.	n.d.	n.d.	34.3 ng/L	n.d.	n.d.	n.d.
16.11.2012	0.9	n.d.	n.d.	n.d.	n.d.	15.3 ng/L	n.d.	n.d.	n.d.

n.d. = not detected; - = not tested

Estrogenitcity WWTP Duisburg-Vierlinden

fi.

0

Estrogenicity WWTP Schwerte

Date of sampling	O ₃ z-spec.	Sample						
		original			extract			
		before O ₃	after O ₃	PAK	before O ₃	after O ₃	PAK	
29.11.2012	0.9	n.d.	n.d.	-	n.d.	1.5 ng/L	-	
07.12.2012	0.9	n.d.	n.d.	-	16.4 ng/L	3.0 ng/L	-	
12.12.2012	0.5	n.d.	n.d.	-	23.4 ng/L	1.6 ng/L	-	
12.03.2013	0.9	n.d.	n.d.	n.d.	19.8 ng/L	21.1 ng/L	1.4 ng/L	

Estrogenicity WWTP Schwerte

f(...

D_U_I_S_B_U R G

Conclusions

Estrogenicity only detected in extracts

- Bad Sassendorf → increase in estrogenicity after ozonation (e.g. through phytoestrogens, matrix effects)
- Duisburg Vierlinden → varying results, partial loss of estrogenicity
- Schwerte → slight decrease in estrogenicity, but not statistically significant

High variation of effluent composition

- General statement on estrogenicity for one WWTP not possible

Efficiency of ozonation is dependent on WWTP effluent composition

Acknowledgements

Project partners:

Financial support:

Ministry for Climate Protection, Environment, Agriculture, Nature Conservation and Consumer Protection of the German State of North Rhine-Westphalia (MKULNV).

UNIVERSITÄT

DUISBURG

Thank you for your attention

