Development of a human cell-based screening panel for toxicological profiling: CALUX Highlights 2013

Behnisch PA and Brouwer B

0

BioDetection Systems b.v. Amsterdam, The Netherlands

CALUX highlights 2013

CALUX highlights 2013

Automation of the CALUX assay

For validation of the effect profiling principle, a lot of data is required!
Automate the CALUX assay to enable HighThroughput-screening!

Hamilton STARIet liquid handling robot coupled to a CO2 incubator
Reduced sample volume in 384-wells format

250 samples per week

Effect profiling of compounds with CALUX panel

- Each compound has a different *in vitro* effect profile
 - ? Is it possible to relate these profiles to in vivo toxicity of the compounds?

Not yet published data – confidential - BDS[©] bv all rights reserved Sept 2013

Studying effects of mixtures : pesticide dump in Tajikistan

	AR anti	PR anti	AP1	nrf2	р53	ER
Reference	flutamide	Ru486	TPA	curcumin	actinomycin D	17b-estradiol
EC10 ref compound	3,0E-08	5,0E-11	2,5E-10	3,2E-06	2,2E-09	2,0E-12
	REP	REP	REP	REP	REP	REP
Lindane	NA	NA	NA	NA	NA	1,0E-06
Aldrin	3,0E-02	5,0E-05	NA	NA	NA	4,0E-07
Dieldrin	1,0	NA	NA	NA	NA	4,0E-06
Endrin	1,0	NA	NA	NA	NA	1,6E-06
o,p-DDT	0,3	7,9E-05	1,0E-05	NA	NA	1,6E-05
p,p-DDT	1,0	2,5E-04	1,3E-05	NA	NA	2,0E-06
DDE	9,5E-03	5,0E-05	NA	NA	NA	4,0E-07

Chemical pattern vs Tox patterns

Rapidly identify risks of single chemicals (for humans, environment)
 Measure chemicals in complex mixtures and link this to hazards
 Example pesticide dump side

Eco*L*inc

CALUX results of prioritised compounds

no activity EC10 = 1E-3MNO	t yet	publi	sh	ed	dat	a-	- C(onfi	de	entia	al -	BD)S®	© b	v a	all	rig	hts	re	se	rve	d S	Se	ot 2	20	13
EC10 = 1E-7M	com	•	Cyte	Cyto	ERa		ER ER	AR	AR-a	PR	GR GR	GR-a	TRb	RAR	LXR	РРА	PPA	DR	Hifta	ç	AP1	ESR	NFk	Nrf2	p21	p53
	pound		tox10%	tox50%			anti		B.		2	E.				Ra	Rg						, w			
ſ	Chlordana				6.0	-			6.5		-	6	•	•					• 1	-	•		•			
	DDT		-5.5	-5	-6.5	-5	8		-0.5 -7 7	-0	.5 6 7	-0 -5.5				-5								-0		
	Endrin		-0		-5.5				-7	-	7	-0				-0.0										
	Hexachlor	benzene	-0	-4.5	-6.5				-6	-	6 6							-5								
Dirty Dozen POPS-	Toxaphene		-5	-4.8	-5.5	-5	.5		-6.5	-6	.5	-5.5						71 0						-6.1		
	PCB126			-4.4					-7 -6.5 7	-0	.5 6					-5	<	-7.1 -0.	5 .2							
	PCB156			-4	-6				-6	-0	6							-7 -6.	8		-4					
l	Furan																	-3.	4					-3		
]	dibenzo[a, dibenzo[a	n]anthracene	-4		-7	-7	.5										-5	-8 -1 -89 -9	0		-6.2	-5.5		-6	-6	
Additional POPs-	benzo[a]py	rene cetate	-3 -7	-6.5	-6	-3	.9		-6.5	-	6						-8	-8.1 -9.	7		-6.5	-4		-6.5	4.6	-4.5
l	methylmer	cury(II)chloride	-5.8	-5.6		-6	.4				-6.0								-6.3	3	-6.3	-6		-6.6	5.6	-5.7
]	Lead chlori Mercuric c	de hloride	-3.5	-3																	-5.3	-3.2		-5.5		
	Cadmium (Cobaltous (chloride chloride	-4.9 -3.9	-4.7																	-5 -3.8			-5.3		
Heavy metals -	Copper chl copper sulf	oride ate	-3.4	-3.2														-3.5						-3 -5		
	Zinc sulpha Sodium are	ate senite	-4.3 -5.4	-4.1					-6.3	-6	.1	-6									-4.1			-6.5		-4.9
ļ	Nickel(II)ch chromium(loride ⁄i)oxide	-3.5 -5																-3.4		-3.1			-4.2		-4.7
			_						_	_					_	_										
Dirty Dozen	POP	s: en	drc	Cir	ne a	act	ivity	y d	io)	kin	rec	ept	or	(d	io)	kins	s/F	PAF	ls)							
Additional POPs: dioxin receptor (PAHs), stress pathways																										
Heavy metal	s:	acut	e t	οχ	icity	′, S	tre	ss p	bat	thw	ays	;														

РАН	Accession number	MW	REP (M/M)	List	IARC classification	TEF
naphthalene	91-20-3	128	<0.0001	EPA	2B	0.001
acenaphtylene	208-96-8	152	<0.0001	EPA	-	0.001
acenaphpthene	83-32-9	154	<0.0001	EPA	3	0.001
fluorene	86-73-7	166	<0.0001	EPA	3	0.001
phenanthrene	85-01-8	178	<0.0001	EPA	3	0.001
anthracene	120-12-7	178	<0.0001	EPA	3	0.01
fluoranthene	206-44-0	202	<0.0001	EPA	3	0.001
pyrene	129-00-0	202	<0.0001	EPA	3	0.001
benzo[c]fluorene	205-12-9	216	<0.0001	EU	3	-
benzo[g,h,i]perylene	191-24-2	276	<0.0001	EPA, EU	3	0.01
cyclopenta[c,d]pyrene	27208-37-3	226	0.0003	EU	2A	-
dibenzo[a,l]pyrene	191-30-0	302	0.002	EU	2A	-
dibenzo[a,h]pyrene	189-64-0	302	0.2	EU	2B	-
dibenzo[a,i]pyrene	189-55-9	302	0.2	EU	2B	_
dibenzo[a,e]pyrene	192-65-4	302	0.3	EU	2B	-
benz[a]anthracene	56-55-3	228	0.3	EPA, EU	2B	0.1
chrysene	218-01-9	228	0.8	EPA, EU	2B	0.01
benzo[a]pyrene	50-32-8	252	1	EPA, EU	1	1
benzo[j]fluoranthene	205-82-3	252	1.3	EU	2B	-
dibenz[a,h]anthracene	53-70-3	278	1.3	EPA, EU	2A	5
indeno[1,2,3-cd]pyrene	193-39-5	276	1.3	EPA, EU	2B	0.1
5-methylchrysene	3697-24-3	242	1.4	EU	2B	-
benzo[k]fluoranthene	207-08-9	252	3.7	EPA, EU	2B	0.1
benzo[b]fluoranthene	205-99-2	252	5.0	EPA, EU	2B	0.1
2.3.7.8-TCDD	1746-01-6	322	5.0		1	

Sample	PAH CALUX-me	asured BEQ	Theo	Ratio measured B	ured BEQ) / Theoretical BEQ		
Synthetic mixtures	Concentration (mM)	Standard deviation (%)	REP-based concentration (mM)	TEF-based concentratio n (mM)	REP/ TEF	REP-based prediction	TEF-based prediction
Industrial soil, Sweden (41)	5.32	14	5.43	0.53	10.2	1.0	10.2
Industrial soil, Sweden 2 (41)	5.10	7	6.79	1.58	2.2	0.8	1.7
Industrial soil, France (42)	7.40	9	10.05	3.06	6.4	0.7	4.7
Industrial soil, Germany (42)	11.87	3	9.15	1.86	4.9	1.3	6.4
Industrial soil, Portugal (42)	6.43	30	5.01	1.07	4.7	1.3	6.0
Roadside, India (40)	1.41	14	13.51	0.76	17.1	1.0	18.3
Urban soil, United Kingdom (39)	1.14	3	11.39	1.32	8.1	1.1	8.7
Reference samples	Concentration (μmol/kg)	Standard deviation (%)	REP-based concentration (μmol/kg)	TEF-based concentratio n (μmol/kg)	REP/ TEF	REP-based prediction	TEF-based prediction
Sewage sludge (LGC9182)	101	17	33.0	3.5	9.4	3.1	28.9
River sediment (LGC6288)	138	4	32.2	5.9	5.5	4.3	23.4
Industrial soil (BCR524)	2160	10	442	55.6	8.0	4.9	38.9

CALUX highlights 2013

New generation of Genotoxicity testing – Negative and positive results as expected..

EcoLinc

	p53 - S9	p53 + S9		p53 - S9	p53 + S9
Cyclophosphamide			Ampicillin trihydrate		
ENU			D-mannitol		
MMS			Phenformin HCl		
Benzo[a]pyrene			n-butyl chloride		
7,12-Dimethylbenzanthracene			(2-chloroethyl)trimethyl-ammonium chloride		1
2-Acetylaminofluorene			Cyclohexanone		
2,4-diaminotoluene			N,N-dicyclohexyl thiourea		
IQ			Trisodium EDTA trihydrate		
PhIP.HCI			Erythromycin stearate		
Aflatoxin B1			Fluometron		
Cadmium chloride			Phenanthrene		
Cisplatin			D-limonene		
p-chloroaniline			Di-(2-ethylhexyl)phthalate		
Etoposide			Amitrole		
Hydroquinone			Tert-butyl alcohol		
Azidothymidine			Diethanolamine		
Sodium arsenite			Melamine		
Taxol			Methyl carbamate		
Chloramphenicol			Progesterone		
			Pyridine		
			Tris(2-ethylhexyl)phosphate		
			Hexachloroethane		

CALUX highlights 2013

Water testing for effects of chemicals/pharmaceuticals or

Endocrine disrupting chemicals

(Drinking, surface, ground, water treatment plants)

CALUX based trigger values for drinking water

CALUX > trigger value \rightarrow more detailed examination warrented

CALUX < trigger value \rightarrow health risks can be waived

Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays

Walter Brand ^{a,*,1}, Cindy M. de Jongh ^{a,1}, Sander C. van der Linden ^b, Wim Mennes ^c, Leo M. Puijker ^a, Cornelis J. van Leeuwen ^a, Annemarie P. van Wezel ^a, Merijn Schriks ^{a,**}, Minne B. Heringa ^{a,2}

Bioassay	Trigger value
ERa CALUX	3.8 ng E2-eq./L
AR CALUX	11 ng DHT-eq./L
GR CALUX	21 ng Dex-eq./L
PR CALUX	333 ng Org2058-eq./L
CALUX	eq./L

BDS Which types of MODE OF ACTIONS are detected? PPAR, Nrf2 and p53 +/- S9 significant like other EDCs!

WWTPs effluents treated with ozone and bio membrane shows low estrogenic activity (by ER CALUX and LC/MS)

Table 3b – Calculated^a chemEEQs based on results from earlier studies with the ER CALUX[®] (Table 1) and the analytical data (Table 2) compared to the data calculated with the ER CALUX[®].

Treatment	Active agent [EEQ ng/L]									ER CALUX® [EEQ ng/L]
	E1	E2	E2-ac	EE 2	E3	BPA	t-NP	MPro-ac	Total ^b	
MBR A	0.29	<5	n.a.	<9.2	<0.18	0.0015	0.080	n.a.	0.37	= 0.37+/-0.09
AO	< 0.08	<5	n.a.	<9.2	<0.18	0.011	0.078	n.a.	0.09	0.06+/-0.06
MBR B	0.26	<5	n.a.	<9.2	<0.18	0.0013	0.097	n.a.	0.36	0.83+/-0.06
BO	< 0.08	<5	n.a.	<9.2	<0.18	0.011	0.054	n.a.	0.07	n.d.
MBR C	0.19	<5	n.a.	<9.2	<0.18	0.0011	0.097	n.a.	0.29	1.23+/-0.24
CO	< 0.08	<5	n.a.	<9.2	<0.18	< 0.0007	0.062	n.a.	0.06	n.d.
MBR A-C									0.34	0.81+/-0.43
OZ A-C									0.07	0.02+/-0.04

a Calculated Concentrations of EEQ = Relative estrogenic potency x concentration [ng/L].

b "Total" calculated only from values that lay above the limit of quantification; n.a. = data not available; n.d. = value not detectable; E1 = estrone; $E2 = 17\beta$ -estradiol; E2-ac = 17β -estradiol acetate; $EE2 = 17\alpha$ -ethinylestradiol; E3 = estriol; BPA = bisphenol A: t-NP = nonylphenol; MPro-ac = medroxyprogesterone acetate.

Sibylle Maletz, T. Floehr, J. Pinnekamp & H. Hollert; RWTH Aachen University;

5074

Fig. 4. GC-MSD and ER-Calux[®] results of real waste water samples. The results of ER-Calux[®] assay are presented as mean ± SD calculated from three parallels. The results of GC-MSD are presented as determined concentrations of one measurement ± relative standard deviation of measurement by GC-MSD.

Water treatment plants treatment efficiency with active carbon or ozonation (Kienle et al, EAWAG 2012)

BDS

Plastic Migration of BPA/Phthalates: ER and anti-AR CALUX correlates well with BPA

(Service Analysis for German EPA, Bad Dessau)

FP7 Project DEMEAU: How to move forward with human cell-based bioassays in regulatory and global usage

This research has received funding from the European Union's Seventh Framework Programme under the grant agreement no. 308339.

Bioactive estrogenic hormones in milk

(Behr et al 2011)

- Soya based products had up to 1500ng EEQ/kg
- Soya-free product had between 10-40ng EEQ/kg
- Baby milk powder had 14-22ng EEQ/kg
- Soya lecithin was also strong estrogenic and therefore a main source of estrogenic activity
- the study concludes that estrogens are omnipresent in food and not only soya based products

- <u>Germany:</u> Testing of migration of plastic materials from baby food packaging in plastic (NaturNes) compared to glass materials (Hipp):
- No difference observed between plastics and glass (ERα, anti-ERα, anti-AR, TR6 and PAH CALUX) (WDR Markt 2011).

- <u>Belgium:</u> Food packaging extracts were analysed for (anti)estrogenic and (anti)-androgenic activity
- Estrogenic activity was found in all flexible elastomers.
- Anti-androgenic activity was found in 2 out of 3 polycarbonate samples (project with National Pack. Inst.)

Why 56 CALUX tests? ToxCast project (USA-EPA) shows importance of anti-agonistic activities of many "Mode of Actions"

Chemical Genomics Profiling of Environmental Chemical Modulation of Human Nuclear Receptors

Ruili Huang,¹ Menghang Xia,¹ Ming-Hsuang Cho,¹ Srilatha Sakamuru,¹ Paul Shinn,¹ Keith A. Houck,² David J. Dix,² Richard S. Judson,² Kristine L. Witt,³ Robert J. Kavlock,² Raymond R. Tice,³ and Christopher P. Austin¹

Why food contact materials ? ToxCast (US-EPA): ReproTox Predictions for Conventional and Alternative Plasticizers

- PFOA and other plastic additives are PPARα active – need to be tested now..
- PFOS is not active in PPARα, but AR and PPARγ active

+PPARa +AR -PXR +OTHER +ERa +CYP +PPARg+GPCR

Biol Reprod. 2011 Aug;85(2):327-39. Epub 2011 May 12. Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Martin MT, Knudsen TB, Reif DM, Houck KA, Judson RS, Kavlock RJ, Dix DJ.

Dietary intake study for dioxins/dl-PCBs in Valencia

REQUIREMENTS	INTERNAL VALIDATION
PROCEDURE BLANK (<1PM)	0,6 pM
RECOVERY CERTIFIED REFERENCE MATERIAL / FORTIFIED SAMPLE.	91,45 % / 111,4 %
APPARENT BIOASSAY RECOVERY (30- 130%)	83,16 %
SUPRESSION SIGNAL TEST (>75%)	118,81 %
REPRODUCIBILITY RSDR (<25%)	12,6 %
REPEATABILITY RSDr (<20%)	10,33 %
FALSE COMPLIANT RATE (<5%)	0 %

A total of 1270 composite samples were analysed corresponding to 189 individual food items that cover 90% of the adult and child diet.

CONSUMPTION DATA Consumption data were collected from a dietary survey using a 24-h recall and performed on 1478 subjects ranging from 6-70 years old.

E. Millán, O. Pardo, V. Yusà, Public Health Research Center²⁸

Dietary intake study in Valencia

Foodgroup	Mean	Minimum	Maximum
Alcoholic beverages	0.030	0.010	0.056
Cereals legums tubers and dried			
fruits	0.187	0.048	2.670
Composite food	0.230	0.014	0.810
Eggs and egg products	0.082	0.041	0.136
Fats and oils	0.367	0.132	0.627
Fish and seafood	0.686	0.124	2.590
Fruits and vegetables	0.023	0.001	0.845
Meat and meat products	0.033	0.003	0.176
Milk and dairy products	0.307	0.014	1.750
Non alcoholic beverages	0.016	0.001	0.151
Sweeteners and condiments	0.229	0.100	0.900

Dioxins per foodgroup - Assessment dioxins def all values UB 100 it (808) Chemical: Dioxins, per unit Bodyweight Daily Average, Total Population

Alcoholic beverages 2%

- Cereals legums tubers and dried fruits 17.3%
- Composite food 4.9%
- Eggs and egg products 1.9%
- Fats and oils 7.5%
- Fish and seafood 27.7%

- Fruits and vegetables 5.1%
- Meat and meat products 1.9%
- Milk and dairy products 20.2%
- Non alcoholić beverages 6.8%
- Sweeteners and condiments 4.6%

- For adults, the average daily intake was estimated as 1.38 and 1.56 pg WHO-TEQ/kg b.w day for the lower bound (LB) and upper bound (UB) scenarios, respectively.
- For children, the average intake was estimated as 2.43 and 2.73 pg WHO-TEQ/kg b.w-day for the LB and UP scenarios, respectively.
- The estimated intakes show that 14 % (LB) or 17 % (UB) of the children population and 4 % (LB) or 5 % (UB) of the adult population exceed the tolerable daily intake (TDI) recommended by the WHO.

Mussel Monitoring e.g., Bohus coast, Sweden

Screenshot from google maps:

Large chemical industries

Mussel analyses, Bohuskusten (coast)

AR CALUX - Bohus mussel

ERa CALUX - Bohus mussel

AR_CALUX1 µg flutamide eq./g product DR_CALUX1 pg 2,3,7,8-TCDD TEQ/g product Era_CALUX1 ng 17ß-estradiol eq./gr product PAH_CALUX1 ng B(a)P eq./gr product PPARg2 ng Rosiglitazone eq./g product

© Lantmäteriet

Terrestrial (Avian) Food Chain

Organochlorine Pollution of Eggs (2001):

Peregrine Falcon > Eagle Owl > Barn Owl > Little Owl ≈ Jackdaw >Great Tit ≈ Blue-Bonnet >> Coal Tit

Catch the rest eggs (Foto: F. Schilling)

Jahr	n	Jahr	n
1967	1		
1968	3		
1969	11		
1970	4		
1971	7	1991	37
1972	-	1992	28
1973	6	1993	30
1974	14	1994	-
1975	16	1995	9
1976	14	1996	4
1977	9	1997	9
1978	11	1998	5
1979	12	1999	28
1980	9	2000	31
1981	8	2001	42
1982	17	2002	36
1983	21	2003	35
1984	18	2004	41
1985	20	2005	29
1986	24	2006	27
1987	24	2007	28
1988	18		
1989	40		
1990	25	Σ	7 1 1

Die Schalen der Jahrgänge 1999, 2000 und 2001 teils ausgeblasen, teils geöffnet (Foto: F. Schilling)

EC NEW GENERIS Projekt – 6 EU countries and 1200 mothers/newborn babies: DR CALUX as biomarkers for baby health

- NEW GENERIS Projekt from 2006 to 2010
- •ca. 2500 samples from mother/baby cohortes
- •from 5 different EU counrties (Denmark, UK, Norway, Greek, Spain)
- •Cord blood from the day of birth and blood of the mother analysed via ER, AR and DR CALUX
- Conclusion: Effects from von bioactive stabile Dioxins/PCBs on head dimension and therefore development of the newborn baby is in discussion

BDS

Which effects have bioactive stabile Dioxine/PCBs

for new born babies?

Mother milk in Hong Kong and China

Comparison DR CALUX-Total-TEQ (BDS) and HRGC/HRMS WHO-Total-TEQ (WHO Reference lab) for pooled breast milk samples (pg/g fat) from Hui et al. Chemosphere 69, 1287 (2007)

Re-evaluation data from human mother milk (data from EU-RL CVUA Freiburg)

Obesity testing by PPAR CALUX panel

PPAR Isoform	Organ specificity	Function
ΡΡΑΒα	Liver	Fatty acid metabolism
ΡΡΑΒγ	Adipose tissue	Lipid storage
ΡΡΑΠδ	ubiquitous	Energy homoeostasis

- PFOA activates PPARα and PPARγ (but not PPARδ) Vanden Heuvel et al. (2006) Toxicol Sci 92: 476-489
- PFCAs activate PPARα positive correlation between carbon chain length and the level of PPARα activation Wolf et al. (2008) Toxicol Sci 106: 162-171

PPAR (α , , δ and γ) CALUX: obesity and insulin sensitivity

Why a panel of in vitro CALUX tests? Link from important chemicals to important health risks

BDS Toxic EQs compared to GW7674 and Rosiglitazone

Compounds	Molecule	ΡΡΑRα	ΡΡΑRγ
GW7674 (PPARα CALUX Standard)		1	-
Rosiglitazone (PPARy CALUX Standard)		-	1
Tributyltin acetate		Not determined	<u>4.8</u>
Monoethylhexylphtalate		<u>1.7E-05</u>	<u>8.0E-04</u>
Perfluoro-butanoic acid (PFBA)	$C_4F_7O_2^-$	5.3E-06	
Perfluoro-pentanoic acid (PFPeA)	$C_5F_9O_2^-$	6.9E-06	
Perfluoro-hexanoic acid (PFHxA)	C ₆ F ₁₁ O ₂	1.2E-05	
Perfluoro-heptanoic acid (PFHpPA)	C7F13O2	6.7E-05	
Perfluoro-octanoic acid (PFOA)	<u>C₈F₁₅O₂</u>	3.1E-05	
Perfluoro-nonanoic acid (PFNA)	C ₉ F ₁₇ O ₂	1.7E-05	
Perfluoro-hexanesulfonic acid (PFHxS)	C ₆ F ₁₃ O ₃ S ⁻		5.5E-05
Perfluoro-octanesulfonic acid (branched-PFOS)	C ₈ F ₁₇ O ₃ S ⁻		3.6E-05
Perfluoro-octanesulfonic acid (linear-PFOS)	C ₈ F ₁₇ O ₃ S ⁻		9.1E-05

Thanks....Questions..???

Do you want to know more about POPs & EDCs cocktails.....???

