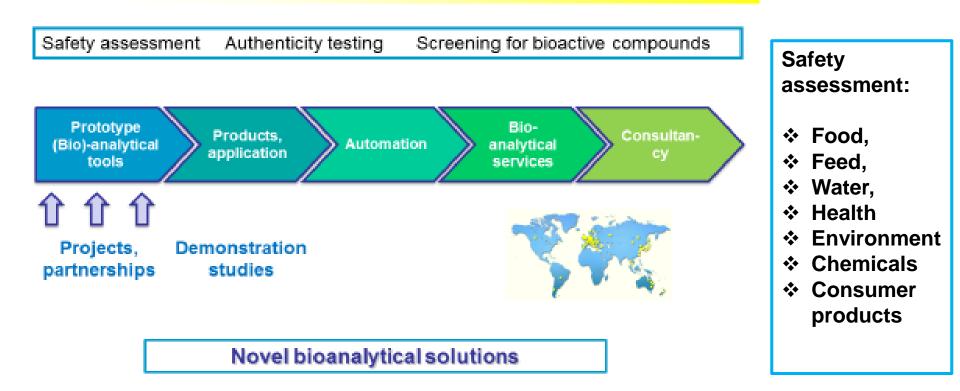
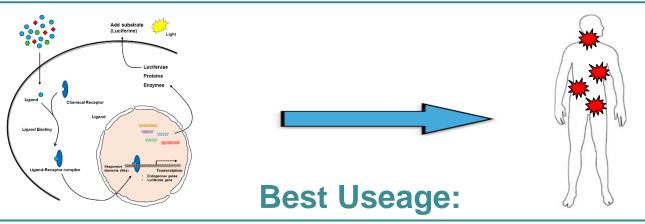


9th Biodetectors Meeting 2016 Lausanne


State of the Art Biodetectors from BDS

Abraham Brouwer, CEO of BDS & MLS, Amsterdam Professor of Environmental Toxicology & Ecogenomics, VU University Amsterdam

Core activity: Develop and apply novel bioassays for health & safety assessment



Key benefits of using AOP-based Bioassays in health & safety assessment

Key Benefits:

- High predictivity of health related-effects
- Good estimate of total effect from mixtures
- Can predict unknown effects of chemicals
- Can discover unknown chemicals in matrices
- Level of precision similar to instrumental methods
- Low cost, high capacity, easy to operate

- Most valuable tool for (human) biomonitoring
- Powerful screening tool for safety assessment e.g food, water
- ✤ Good in vitro alternative for chemical safety assessment

Many CALUX[®] assays available with different AOP

Nuclear receptors		Signaling pathways		Controls			
name	status cell	name	status	cell	name	status	cell
DR CALUX	Acute to	oxicity				✓.	U2OS
PAH CALUX		•				 ✓ . 	all
ER CALUX	 Oxidative stress 						all
ERalpha CALUX	 AhR pathway 						all
ERbeta CALUX	-	•		_			
ERalpha CALUX	Endocr	ine effect	S/EDC	5S			
ERbeta CALUX	Obesog	iens					
AR CALUX	•	•				Add sub	ustrato (luciTarine)
PR CALUX •	Reprod	uctive eff	ects			Ligand	reference reference
GR CALUX	Genoto	xicity/car	cinod	enic	itv		
TR CALUX		•	oniog	CIIIC	ity	Ligard binding	
RAR CALUX	Metabolism						
PPARγ1 CALUX	etc						Cytoee
PPARy2 CALUX	•••						
	U20S	STAT CALUX		0205			
PPARō CALUX LXR CALUX		CALUX	• n–28				
VDR CALUX	Agonist/a	ntagonist	:: 25x2	2=56	assays		
MR CALUX	✓. U20S	-			-		
ausanne 2016	. 0200						

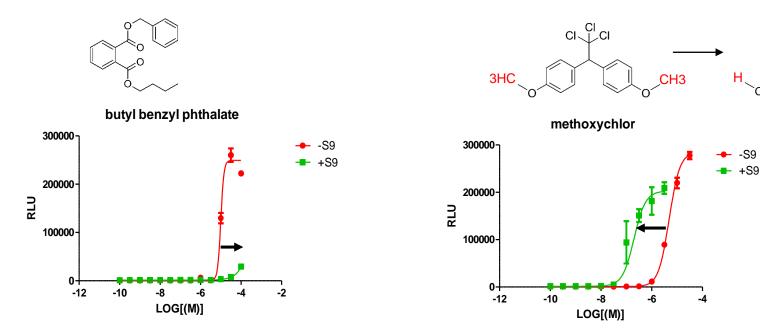
BDS

BDS AOP-based detection methods are applied in a wide range of sectors



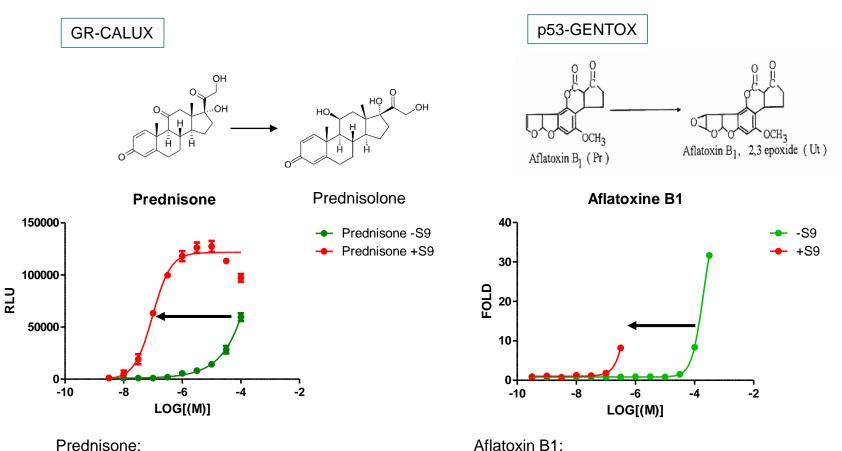
OECD currently identified urgent needs & gaps in EDC testing:

- Incorporation of metabolism into *in vitro* (EDC) assays
- > Thyroid *in vitro* assays
- PPAR alfa and gamma assays
- AhR based assay, like DR-CALUX for OECD validation


BDS innovation priorities 2015 related to EDCs

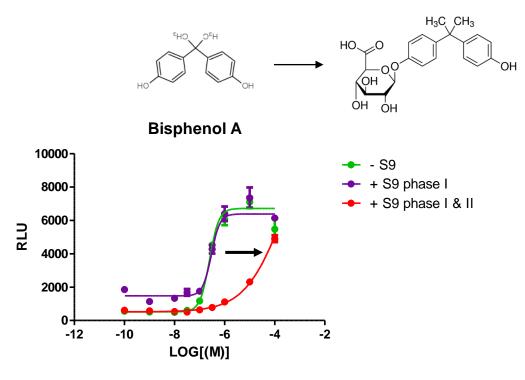
- Development dual metabolism CALUX reporter system
- Continue validation of ER, AR for OECD
- Validation/applications of TTR-TRβ CALUX
- H295R based CALUX for steroidogenesis
- Validation of DR-CALUX assay for OECD
- PPARalfa, -beta, -gamma CALUX panel for obesity/metabolic syndrome

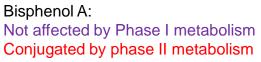
Methods:


- Expose ERa-CALUX cells to compound
- Add S9 mix (0.03%), including cofactors for Phase I (P450s)
- Incubate for 24h
- Lyse & measure

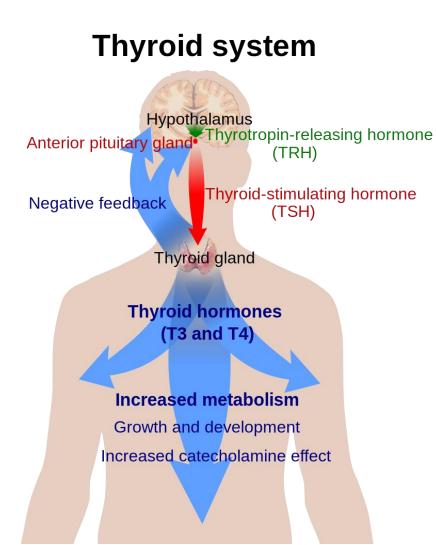
Butyl benzyl phthalate: almost completely degraded by S9 mix Methoxychlor: Converted into more estrogenic metabolite HPTE by S9 mix

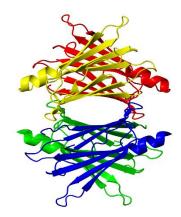
HPTE



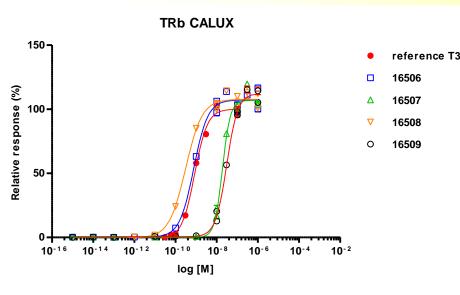

Converted into more active glucocorticoid Prednisolone by S9 mix Aflatoxin B1: Converted into DNA-damaging adduct by S9 mix

Methods:

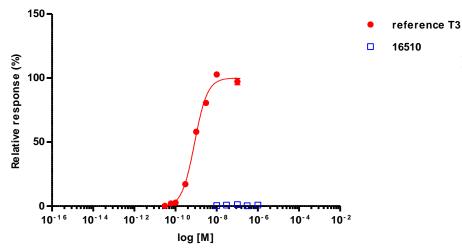

- Expose ERa-CALUX cells to compound
- Add S9 mix (0.03%), including cofactors for Phase I (P450s) and Phase II (SULTs, UGTs, GSTs)
- Incubate for 24h
- Lyse & measure

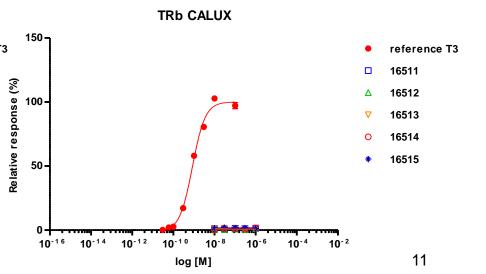


Endocrine disruption via thyroid hormone disturbance

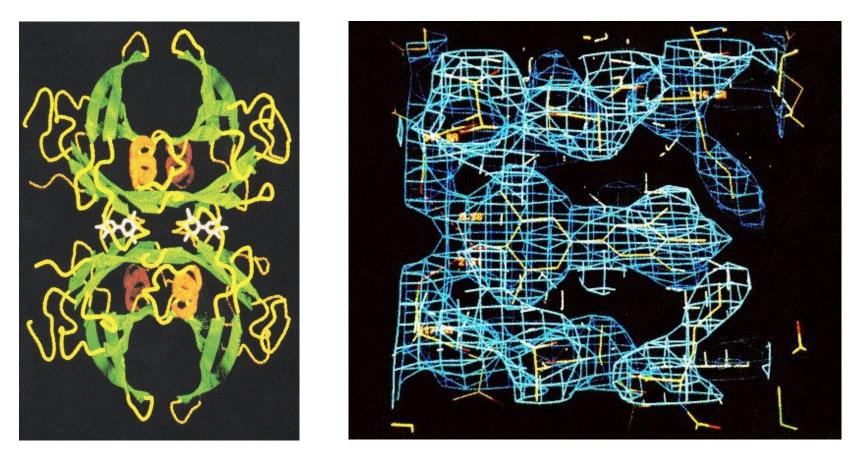

Thyroid hormone transport

- TBG
- TTR
- albumin

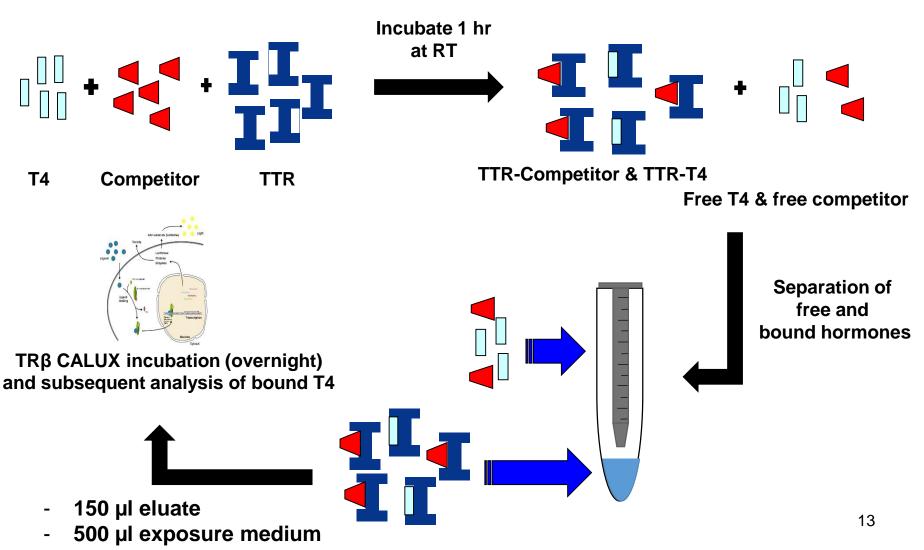



Only very few chemicals act directly on the Thyroid Receptor Example results: TRβ CALUX

Sample ID*		Compound	CAS	
1	16506	Triiiodothyronine (T3)	6893-02-03	
2	16507	Thyoxine (T4)	51-48-9	
3	16508 TRIAC (T3-like analogue)		51-24-1	
4	16509	16509 TETRAC (T4-like analogue)		
5	16510 Amiodarone		19774-82-4	
6	16511 Pentachlorophenol (PCP)		87-86-5	
7	16512 Ethylene thiourea (ETU)		96-45-7	
8	16513 2,2,4,4-tetrahydroxybenzophenone		131-55-5	
9	16514	Methimazole	60-56-0	
10	16515	Solvent only (negative control)		

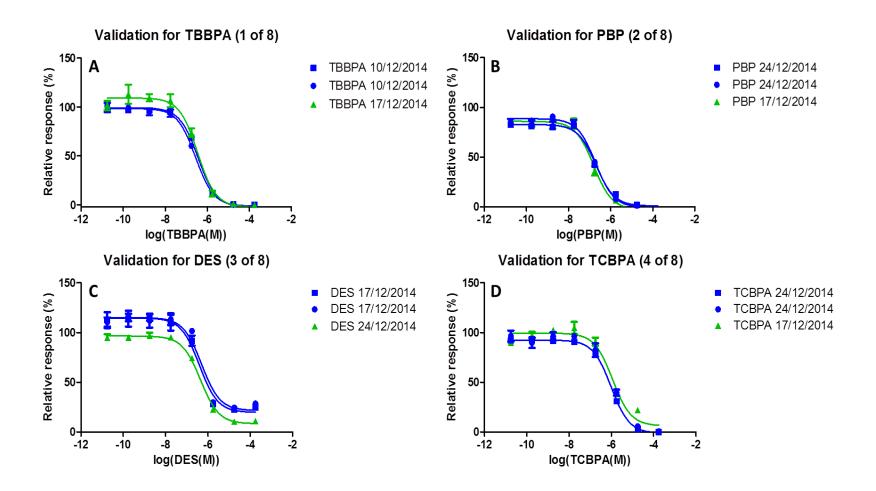

TRb CALUX

Most thyroid-based EDCs act on TH transport & metabolism steps

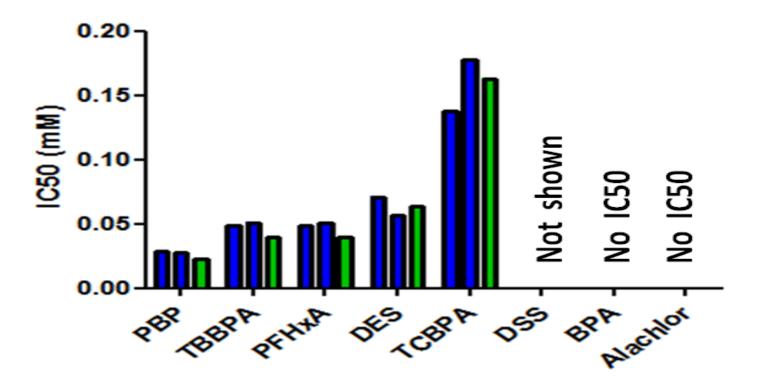


X-Ray crystallographic analysis of hydroxy-PCB nested in the T4-binding pocket on TTR Ghosh et al., Acta Cryst. (2000) D56, 1085-1095

9th Biodetectors Lausanne 2016



Development of label-free (TTR-)TRβ CALUX assay (Available mid 2016)



Several examples of TTR-binding inhibition by halogenated phenolic compounds (1)

Several examples of TTR-binding inhibition by halogenated phenolic compounds (3)

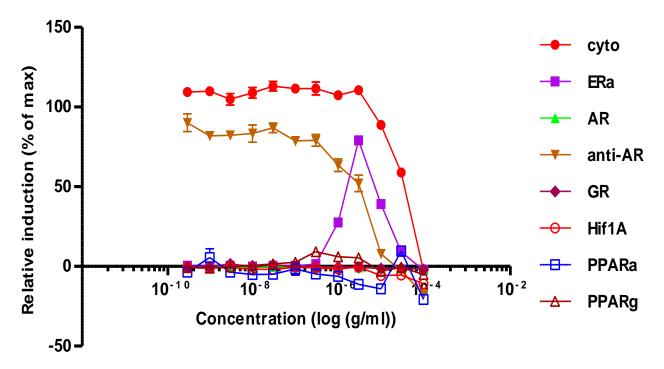
What are new developments within BDS regarding bioassays/applications?

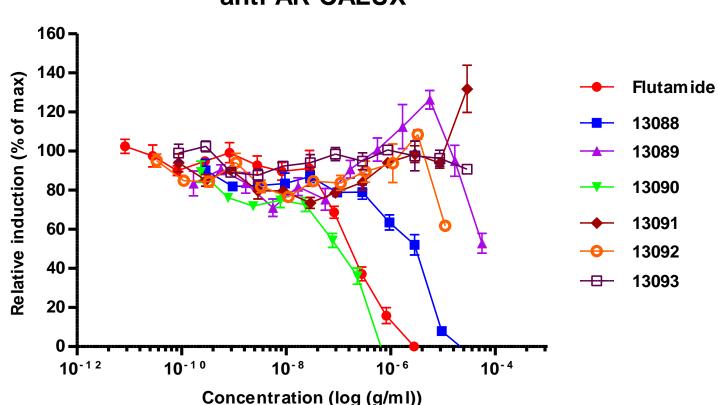
BDS innovation priorities: non-EDC applications

- Continue robot-based CALUX methods (endocrine, carcinogenic)
- CALUX panel bioactivity screening panel design (plant, biobased)
- Develop application CALUX panel for Mycotoxins
- Decision support tool Chemical safety assessment by bioassays
- CALUX panel application for biomass valuation & soil quality
- NGS-based authenticity test development (oil, meat, TBD)
- Luc-based bacterial reporters

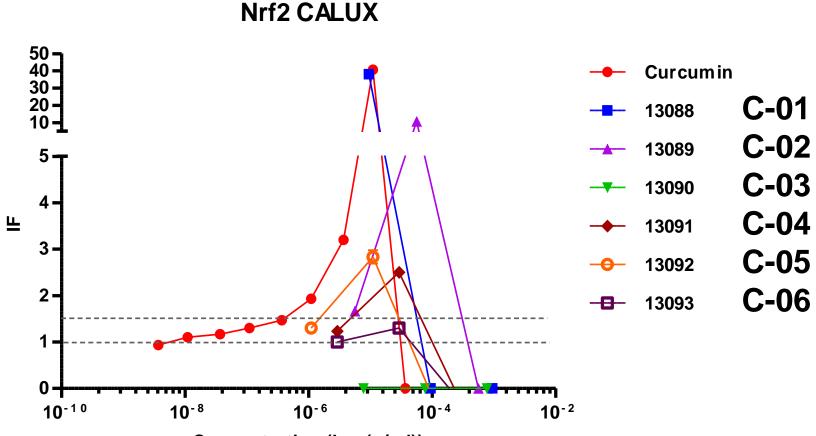
Analysis of plant extracts by a panel of CALUX bioassays

Cleistocalyx Operculatus


The leaves and buds of *C. operculatus* are harvested, dried, and brewed as an herbal tea in <u>Vietnam</u> known as "nước vối" with stomachic properties.[[]

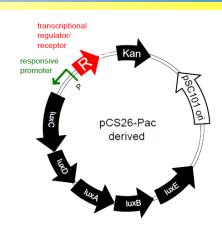

13088

Analysis of plant pure compounds for <u>anti-androgenic activity</u> anti-AR):



anti-AR CALUX

Analysis of plant pure compounds for <u>Antioxidant activity</u> (Nrf2):



Concentration (log (g/ml))

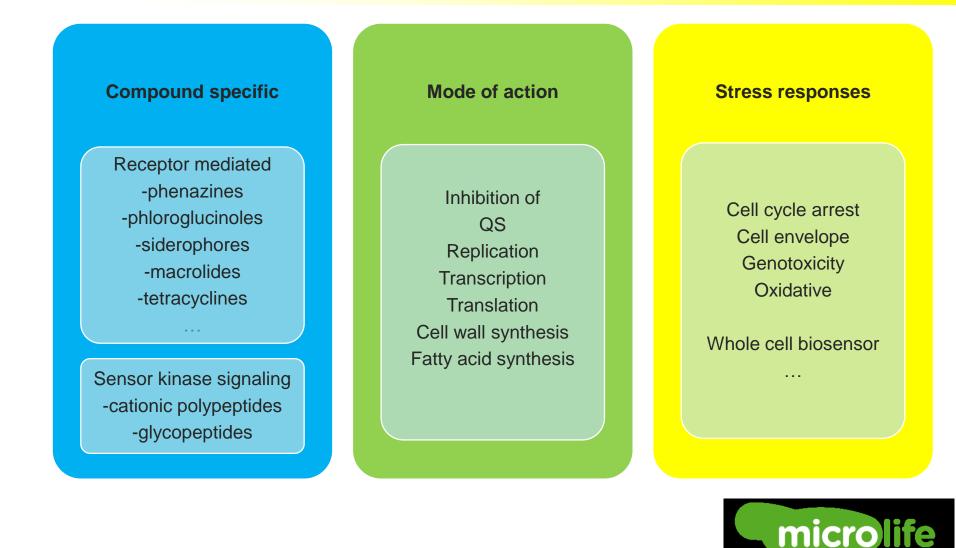
Bacterial reporters for disease-suppressing compounds in soil extracts

Compounds	Promoter	Regulator	Strain					
Phenazines	- <i>mexGHI-opmD</i> or -PA14-35160	soxR	P. aeruginosa PA14					
2,4-DAPG	<i>phI</i> ACBDE	phIF	P. fluorescens Pf-5					
Pyoluteorin	pltLABCDEFG	pltR	P. fluorescens Pf-5 Pseudomonas M18					
Quinolones	pqsABCDE	pqsR mvfR	P. aeruginosa PA14					
Macrolides	mph(A)mrx	Mphr(A)	E. coli Tf481A					

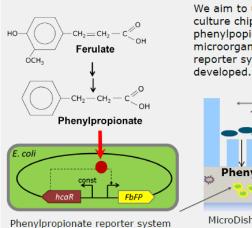
Proof of principle

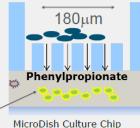
- Photorhabdus luminiscens luxCDABE operon (autonomous, real-time, stable @ 37°C)
- Low copy number plasmid
- 🔺 🛛 E. coli

Further optimization


- Chromosomal integration?
- Different host?
- Knockouts necessary?

Bjarnason et al. (2003) J. Bact.


Bacterial reporter panel for Nature Mining (antibiotics, bioactivities, ecosystem services)



1. Development of (anaerobic) reporter assays for the detection of anaerobic lignin degraders. To be deployed under anaerobic conditions on an MDCC chip (rice straw enrichment).

Lignin: focus on the intermediate product 3-phenylpropionic acid (3-PPA), degradation product of the lignin crosslink ferulic acid.

We aim to use the MicroDish culture chip to screen for phenylpopionate producing microorganisms. Therefore a reporter system is being developed.

Take home messages

- CALUX HTP-panel of assays with good predictions of *in vivo* effects available (e.g. endocrine disruption, reproductive toxicity, genotoxicity/carcinogenesis and acute toxicity);
- Modular *in vitro* metabolism step to CALUX reporter assays provides a good prediction of the bio-activation or degradation of compounds as occurs after *in vivo* exposure;
- Addition of protein-binding inhibition (TTR) step as a module to TRbeta reporter creates TH-EDC method with good predictability of *in vivo* action of compounds (e.g. halogenated phenolics) interfering with TH-metabolism;
- CALUX panel also useful for functionality screening of Beneficial's in plants, herbs;
- Luc-based microbial reporters for soil quality, food & biomass valuation available

We are happy to discuss any options for future collaboration

Thank you for your attention!