Chemical water quality

Let's work together

Many chemicals (potentially) reach the water system

Assess risks of chemicals

(exposure * hazardous properties)

pGLV / TTC (Baken et al. 2018)

Different responsibilities at different parties

Bioanalytical tools for effect-based monitoring

bioassays

- insight in potential risks for environmental and human health
- (unknown) complex low-level mixtures of micropollutants
- risk-based approach (revision of EU Drinking
 Water Directive) > implementation ongoing

Main challenges: selection and interpretation of bioassays.

	Toxicity endpoints relevant for drinking water monitoring	Specific pathway	Most promising bioassay(s)		
of	Xenobiotic metabolism	PXR receptor agonists AhR receptor agonists	HG5LN PXR assay, PXR HepG2 assay DR CALUX, AhR geneblazer		
	Hormone-mediated mode of action	(anti)estrogenic activity (anti)androgenic activity	ERα CALUX, YES assay AR CALUX, AR-MDA-kb2		
nking		(anti)glucocorticoid activity	GR CALUX, GR-MDA-kb2		
oing	Reactive mode of action	Gene mutations Chromosomal mutations	Ames fluctuation assay, ToxTracker Micronucleus assay, ToxTracker		
2- new relevant	opens in 3 years?) may be different now endpoints	DNA damage response	UMUc assay, Vitotox, p53 CALUX, BlueScreen Nrf2 CALUX, AREc32 assay		
	endpoints S, antibiotic resistance, no Developmental toxicity	eurotoxicity) Focus point distruption	Various nuclear receptor activation assays, H295R assay)		

Bioassays at work

Guidelines, frameworks and other applications

Australian Guidelines for Water Recycling (2008)

Potable reuse: Guidance for producing safe drinking-water (WHO 2017)

Bioassays mentioned as promising innovative method no guidelines for implementation

Proposed EU minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge (2018)

SCHEER opinion: current proposed regulation not sufficient, include novel methods such as bioassays < EU proces ongoing

Water quality monitoring

- RIWA (river water)
- SIMONI framework (surface water)

Evaluation of water treatment processes

- formation of transformation products
- reduction in emissions (e.g. crop protection products)
- resilience analysis of treatment trains

PEPA United States Environment Agency

U.S. EPA ToxCast database

New candidate bioassays for chemical drinking water quality

high throughput in vitro toxicity information

(> 8000 environmentally relevant chemicals; >1500 in vitro bioassays endpoints)

- selection of new candidate bioassays as bioanalytical tools to detect polycyclic aromatic hydrocarbons and (chloro)phenols
- criteria for sensitivity and specificity
- molecular or cellular effects identified that are not covered by currently applied bioassays (Louisse et al. 2018).

Name	CAS		
Anthracene	120-12-7		
Benz(a)anthracene	56-55-3		
Benzo(a)pyrene	50-32-8		
Benzo(b)fluoranthene	205-99-2		
Benzo(g,h,i)perylene	191-24-2		
Benzo(k)fluoranthene	207-08-9		
Chrysene	218-01-9		
Fluoranthene	206-44-0		
Indeno(1,2,3-cd)pyrene	193-39-5		
Phenanthrene	85-01-8		
Pyrene	129-00-0		

Α	В	С	D	E	F	G	н	1	J
8.3						11			
13	1.7	1.9	0.77	0.22	10	4.5	5.9	1.5	1.5
0.23		-	0.14	0.21	0.54	11	6.1		
3.5	1.9		0.11	0.049	7.8	13	7.3		
0.40			1.0						
0.040			0.035	0.0014	0.081				
			2.4	0.71					
10	2.6	4.7			11	4.9	14	5.1	6.1
		0.73							
	6.8	9.8						8.5	11
	3.4	1.7					14	7.0	8.1

- A. TOX21_ESRE_BLA_ratio
 B. CEETOX_H295R_OHPROG_dn
 C. ATG_PXRE_CIS_up
 D. TOX21_ARE_BLA_agonist_ratio
 E. TOX21_AhR_LUC_Agonist
 E. TOX21_ERa_BLA_Agonist_ratio
 - F. TOX21_ERa_BLA_Agonist_ratio G. TOX21 ERa LUC BG1 Agonist
- H. TOX21 MMP ratio down
- I. CEETOX_H295R_TESTO_dn
- J. CEETOX_H295R_ANDR_dn

U.S. EPA ToxCast database

Prioritization for risk-based monitoring

Risk-based monitoring: Include the most relevant chemicals

- 1) Prioritize target chemical data
- 2) Prioritize HRMS non-target data for further confirmation

high resolution mass spectrometry pos/neg ionization modes features: combinations of retention time + accurate mass

7000 features detected in 151 Dutch water samples taken during 2007–2014

Brunner et al. submitted

New trigger values (EBT) Interpretation of bioassay responses

- bioassay responses can occur (far) below exposure concentrations that are relevant for potential effects on human health
- EBT can be used to distinguish whether a response may be linked to a potential adverse health outcome

Different methods are available

Health-based EBT (Brand et al. 2013)

Environmental EBT (Van der Oost et al. 2017)

Guideline read-across EBT (Escher et al. 2018)

New EBT method

(joint research of Dutch drinking water companies)

- pGLV of relevant chemicals in assay
- internal exposure at safe intake levels
- differentiating for low, acceptable and increased risks

Applied to CALUX assays

Performance testing planned

(experimental evaluation and comparison with monitoring data)

Bioassays in AquaNES

natural and engineered treatment systems

Bioassay responses at different treatment steps

18 different CALUX assays / 13 demonstration sites

Europe, India and Israel

river bank filtration sites aquifer recharge sites constructed wetlands

2nd tier

selected CALUX assays and demonstration sites

(ongoing research)

Evaluate efficiency and robustness of combined natural and engineered treatment systems

Correlation between bioassay and chemical target / non-target data

Dutch bioassay implementation support

Implementation guidance and research

Rijksoverheid

Intentieverklaring Delta-aanpak Waterkwaliteit en Zoetwater
Intent for Delta-approach on Water Quality and Freshwater
Dutch government, civil-social organisations and research institutes

Contaminants of emerging concern (CEC) partnership www.cec-partnership.nl
Projects on bioassays: EMERCHE, RoutinEDA

Kennis Impuls Waterkwaliteit
Knowledge impuls for water quality
Project KIW ESFT2 on Effect-based monitoring

Ketenaanpak Medicijnresten uit Water
Chain approach medicine residues out of the water
Aim to use effect-based monitoring

NORMAN Collaborative Trial

Bioassays for genotoxicity testing

Explore the performance of different bioassays for genotoxicity and related mechanisms

communication, discussion and inspiration within the NORMAN network

Participants blindly test water-relevant micropollutants mixtures using their own methods

Sample constituents will be revealed in the report

Time schedule

Deadline for registration - June 15th 2018

24 participants ©

Preparation and distribution of samples - July 2018

2 water samples, 2 DMSO samples + solvent control

- Test results reported to KWR November 2018
- Dissemination of results from December 2018

Acknowledgements:

Joint Research Programme Water Companies (BTO) KWR Chemical Water Quality and Health

Thank you! milou.dingemans@kwrwater.nl

References

Baken et al. 2018. Environ Int doi: 10.1016/j.envint.2018.05.006 Brand et al. 2013. Environ Int. doi: 10.1016/j.envint.2013.02.003 Dingemans et al. 2018. Integr Environ Assess Manag doi:10.1002/ieam.4096 Escher et al. 2018. Sci Total Environ doi: 10.1016/j.scitotenv.2018.01.340 Louisse et al. 2018. Chemosphere doi:10.1016/j.chemosphere.2018.06.056 van der Oost et al. 2017. Environ Toxicol Chem doi: 10.1002/etc.3836 Sjerps et al. 2016. Water Res doi: 10.1016/j.watres.2016.02.034