Chemical water quality Let's work together Many chemicals (potentially) reach the water system Assess risks of chemicals (exposure * hazardous properties) pGLV / TTC (Baken et al. 2018) Different responsibilities at different parties Bioanalytical tools for effect-based monitoring bioassays - insight in potential risks for environmental and human health - (unknown) complex low-level mixtures of micropollutants - risk-based approach (revision of EU Drinking Water Directive) > implementation ongoing Main challenges: selection and interpretation of bioassays. | | Toxicity endpoints relevant for drinking water monitoring | Specific pathway | Most promising bioassay(s) | | | |-----------------|---|---|--|--|--| | of | Xenobiotic metabolism | PXR receptor agonists AhR receptor agonists | HG5LN PXR assay, PXR HepG2 assay DR CALUX, AhR geneblazer | | | | | Hormone-mediated mode of action | (anti)estrogenic activity (anti)androgenic activity | ERα CALUX, YES assay
AR CALUX, AR-MDA-kb2 | | | | nking | | (anti)glucocorticoid
activity | GR CALUX, GR-MDA-kb2 | | | | oing | Reactive mode of action | Gene mutations Chromosomal mutations | Ames fluctuation assay, ToxTracker Micronucleus assay, ToxTracker | | | | 2- new relevant | opens in 3 years?)
may be different now
endpoints | DNA damage response | UMUc assay, Vitotox, p53 CALUX, BlueScreen Nrf2 CALUX, AREc32 assay | | | | | endpoints S, antibiotic resistance, no Developmental toxicity | eurotoxicity) Focus point distruption | Various nuclear receptor activation assays, H295R assay) | | | ## Bioassays at work ## Guidelines, frameworks and other applications Australian Guidelines for Water Recycling (2008) Potable reuse: Guidance for producing safe drinking-water (WHO 2017) Bioassays mentioned as promising innovative method no guidelines for implementation Proposed EU minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge (2018) SCHEER opinion: current proposed regulation not sufficient, include novel methods such as bioassays < EU proces ongoing ### Water quality monitoring - RIWA (river water) - SIMONI framework (surface water) # Evaluation of water treatment processes - formation of transformation products - reduction in emissions (e.g. crop protection products) - resilience analysis of treatment trains ## PEPA United States Environment Agency ### U.S. EPA ToxCast database ## New candidate bioassays for chemical drinking water quality ### high throughput in vitro toxicity information (> 8000 environmentally relevant chemicals; >1500 in vitro bioassays endpoints) - selection of new candidate bioassays as bioanalytical tools to detect polycyclic aromatic hydrocarbons and (chloro)phenols - criteria for sensitivity and specificity - molecular or cellular effects identified that are not covered by currently applied bioassays (Louisse et al. 2018). | Name | CAS | | | |------------------------|----------|--|--| | Anthracene | 120-12-7 | | | | Benz(a)anthracene | 56-55-3 | | | | Benzo(a)pyrene | 50-32-8 | | | | Benzo(b)fluoranthene | 205-99-2 | | | | Benzo(g,h,i)perylene | 191-24-2 | | | | Benzo(k)fluoranthene | 207-08-9 | | | | Chrysene | 218-01-9 | | | | Fluoranthene | 206-44-0 | | | | Indeno(1,2,3-cd)pyrene | 193-39-5 | | | | Phenanthrene | 85-01-8 | | | | Pyrene | 129-00-0 | | | | Α | В | С | D | E | F | G | н | 1 | J | |-------|-----|------|-------|--------|-------|-----|-----|-----|-----| | 8.3 | | | | | | 11 | | | | | 13 | 1.7 | 1.9 | 0.77 | 0.22 | 10 | 4.5 | 5.9 | 1.5 | 1.5 | | 0.23 | | - | 0.14 | 0.21 | 0.54 | 11 | 6.1 | | | | 3.5 | 1.9 | | 0.11 | 0.049 | 7.8 | 13 | 7.3 | | | | 0.40 | | | 1.0 | | | | | | | | 0.040 | | | 0.035 | 0.0014 | 0.081 | | | | | | | | | 2.4 | 0.71 | | | | | | | 10 | 2.6 | 4.7 | | | 11 | 4.9 | 14 | 5.1 | 6.1 | | | | 0.73 | | | | | | | | | | 6.8 | 9.8 | | | | | | 8.5 | 11 | | | 3.4 | 1.7 | | | | | 14 | 7.0 | 8.1 | - A. TOX21_ESRE_BLA_ratio B. CEETOX_H295R_OHPROG_dn C. ATG_PXRE_CIS_up D. TOX21_ARE_BLA_agonist_ratio E. TOX21_AhR_LUC_Agonist E. TOX21_ERa_BLA_Agonist_ratio - F. TOX21_ERa_BLA_Agonist_ratio G. TOX21 ERa LUC BG1 Agonist - H. TOX21 MMP ratio down - I. CEETOX_H295R_TESTO_dn - J. CEETOX_H295R_ANDR_dn ## U.S. EPA ToxCast database ## Prioritization for risk-based monitoring Risk-based monitoring: Include the most relevant chemicals - 1) Prioritize target chemical data - 2) Prioritize HRMS non-target data for further confirmation high resolution mass spectrometry pos/neg ionization modes features: combinations of retention time + accurate mass 7000 features detected in 151 Dutch water samples taken during 2007–2014 Brunner et al. submitted # New trigger values (EBT) Interpretation of bioassay responses - bioassay responses can occur (far) below exposure concentrations that are relevant for potential effects on human health - EBT can be used to distinguish whether a response may be linked to a potential adverse health outcome ### Different methods are available Health-based EBT (Brand et al. 2013) Environmental EBT (Van der Oost et al. 2017) Guideline read-across EBT (Escher et al. 2018) ### New EBT method (joint research of Dutch drinking water companies) - pGLV of relevant chemicals in assay - internal exposure at safe intake levels - differentiating for low, acceptable and increased risks Applied to CALUX assays Performance testing planned (experimental evaluation and comparison with monitoring data) # Bioassays in AquaNES ## natural and engineered treatment systems Bioassay responses at different treatment steps 18 different CALUX assays / 13 demonstration sites Europe, India and Israel river bank filtration sites aquifer recharge sites constructed wetlands 2nd tier selected CALUX assays and demonstration sites (ongoing research) Evaluate efficiency and robustness of combined natural and engineered treatment systems Correlation between bioassay and chemical target / non-target data # Dutch bioassay implementation support Implementation guidance and research Rijksoverheid Intentieverklaring Delta-aanpak Waterkwaliteit en Zoetwater Intent for Delta-approach on Water Quality and Freshwater Dutch government, civil-social organisations and research institutes Contaminants of emerging concern (CEC) partnership www.cec-partnership.nl Projects on bioassays: EMERCHE, RoutinEDA Kennis Impuls Waterkwaliteit Knowledge impuls for water quality Project KIW ESFT2 on Effect-based monitoring Ketenaanpak Medicijnresten uit Water Chain approach medicine residues out of the water Aim to use effect-based monitoring ## **NORMAN Collaborative Trial** Bioassays for genotoxicity testing Explore the performance of different bioassays for genotoxicity and related mechanisms communication, discussion and inspiration within the NORMAN network Participants blindly test water-relevant micropollutants mixtures using their own methods Sample constituents will be revealed in the report ### Time schedule Deadline for registration - June 15th 2018 24 participants © Preparation and distribution of samples - July 2018 2 water samples, 2 DMSO samples + solvent control - Test results reported to KWR November 2018 - Dissemination of results from December 2018 ### **Acknowledgements:** Joint Research Programme Water Companies (BTO) KWR Chemical Water Quality and Health Thank you! milou.dingemans@kwrwater.nl ### References Baken et al. 2018. Environ Int doi: 10.1016/j.envint.2018.05.006 Brand et al. 2013. Environ Int. doi: 10.1016/j.envint.2013.02.003 Dingemans et al. 2018. Integr Environ Assess Manag doi:10.1002/ieam.4096 Escher et al. 2018. Sci Total Environ doi: 10.1016/j.scitotenv.2018.01.340 Louisse et al. 2018. Chemosphere doi:10.1016/j.chemosphere.2018.06.056 van der Oost et al. 2017. Environ Toxicol Chem doi: 10.1002/etc.3836 Sjerps et al. 2016. Water Res doi: 10.1016/j.watres.2016.02.034