

# Explore and exploit nature for valuable microbial activities: Products



# Bioactive compounds

**Enzymes** 





Microorganisms



# Explore and exploit nature for valuable microbial activities: Technology



# Functional screens

Sequence analysis





**Production** 



### A (brief) history of antibiotics and antibiotic resistance



#### Antibiotic use and water

#### Antibiotic use

- Has increased by 65% worldwide between 2010-2015
- Increase mainly driven by increased use in low and middle income countries
- Especially rapid increase in "last-resort" compounds

#### Waste water treatment

- Antibiotics end up in wastewater treatment plants
- Waste removal often includes biological treatment (bacteria)
- Old, un-upgraded facilities do not remove antibiotics completely

#### Antibiotics in surface water

- Leads to increased numbers of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG)
- Measure antibiotic concentrations to link to ARB and ARG



### Bacterial reporter bioassays (MicroGLO™)

#### **Antimicrobials**

Redox cycling

**Anti-oxidants** 

Structural recognition of specific groups of antibiotics

#### **Inhibition of**

Quorum sensing

Replication

Transcription

Translation

Cell wall synthesis

Fatty acid synthesis

•••

### **Biomass** conversion

Lignocellulose degradation

**Fermentation inhibitors** 



### Bioluminescence in nature











#### Different bacterial luciferase operons





#### Prokaryote luciferase reporter assay





### Microbial reporter assays Example: pPHZlux reporter (oxidative stress)









### Microbial reporter assay panel (antimicrobial) Usable antimicrobial reporters and their function

| reporter       | Measured effects                                                                                 |
|----------------|--------------------------------------------------------------------------------------------------|
| pTETlux        | Protein synthesis inhibition (detects tetracycline)                                              |
| pSOSlux-2ΔtolC | Reporter that detects DNA damage                                                                 |
| pROSlux-3      | Reporter for the detection of oxidative stress (agonism) and anti-oxidant compounds (antagonism) |
| pPQSlux-2      | Detects alkyl-quinolones                                                                         |
| pAHLlux-1      | Detects AHL quorum sensing                                                                       |
| pAHLlux-2      | Detects AHL quorum sensing                                                                       |
| pAHLlux-3      | Detects AHL quorum sensing                                                                       |
| pBLAlux-2ΔampD | Cell wall synthesis inhibition (detects beta-lactams)                                            |
| pMAClux-3ΔtolC | Protein synthesis inhibition (detects macrolides)                                                |
| pPHZlux        | Detects phenazines                                                                               |



### Microbial reporter assay panel (MicroGLO™) induction time











## Antimicrobial reporter assay panel Model compounds

| Compound       | Tetracycline | Doxocycline | Ciprofloxacin | MitomycinC | H2O2 | PQS | N-butyryl-L-HSL(BHL) | N-3-oxohexanoyl-L-HSL | N-3-oxododecanoyl-L-HSL | PenicillinG | Ampicillin | Erythromycin | Spiramycin | Pyocyanine | Plumbagin |
|----------------|--------------|-------------|---------------|------------|------|-----|----------------------|-----------------------|-------------------------|-------------|------------|--------------|------------|------------|-----------|
| pTETlux        |              |             |               |            |      |     |                      |                       |                         |             |            |              |            |            |           |
| pSOSlux-2ΔtolC |              |             |               |            |      |     |                      |                       |                         |             |            |              |            |            |           |
| pROSlux-3      |              |             |               |            |      |     |                      |                       |                         |             |            |              |            |            |           |
| pPQSlux-2      |              |             |               |            |      |     |                      |                       |                         |             |            |              |            |            |           |
| pAHLlux-1      |              |             |               |            |      |     |                      |                       |                         |             |            |              |            |            |           |
| pAHLlux-2      |              |             |               |            |      |     |                      |                       |                         |             |            |              |            |            |           |
| pAHLlux-3      |              |             |               |            |      |     |                      |                       |                         |             |            |              |            |            |           |
| pBLAlux-2ΔampD |              |             |               |            |      |     |                      |                       |                         |             |            |              |            |            |           |
| pMAClux-3ΔtolC |              |             |               |            |      |     |                      |                       |                         |             |            |              |            |            |           |
| pPHZlux        |              |             |               |            |      |     |                      |                       |                         |             |            |              |            |            |           |



#### Microbial reporter assay panel (anti-microbial) Cross validation (all compounds on all reporters)

| Compound       | Tetracycline | Doxocycline | Ciprofloxacin | MitomycinC | Н2О2 | PQS | N-butyryl-L-HSL(BHL) | N-3-oxohexanoyl-L-HSL | N-3-oxododecanoyl-L-<br>HSL | PenicillinG | Ampicillin | Erythromycin | Spiramycin | Pyocyanine | Plumbagin |
|----------------|--------------|-------------|---------------|------------|------|-----|----------------------|-----------------------|-----------------------------|-------------|------------|--------------|------------|------------|-----------|
| pTETlux        | +            | +           | -             | -          | _    | _   | -                    | _                     | -                           | -           | -          | _            | -          | -          | _         |
| pSOSlux-2ΔtolC | -            | -           | +             | +          | -    | -   | -                    | -                     | -                           | -           | -          | -            | -          | -          | _         |
| pROSlux-3      | -            | -           | -             | -          | +    | -   | -                    | -                     | -                           | -           | -          | -            | -          | -          | _         |
| pPQSlux-2      | +            | +           | -             | +          | -    | +   | -                    | -                     | -                           | -           | -          | -            | -          | -          | _         |
| pAHLlux-1      | -            | -           | -             | -          | -    | -   | -                    | +                     | -                           | -           | -          | -            | -          | -          | _         |
| pAHLlux-2      | -            | -           | -             | -          | -    | -   | -                    | -                     | +                           | -           | -          | -            | -          | -          | _         |
| pAHLlux-3      | 5            | 5           | -             | ?          | -    | -   | +                    | -                     | -                           | 5           | 3          | -1           | 3          | ?          | ?         |
| pBLAlux-2ΔampD | +            | +           | 1             | -          | -    | -   | -                    | -                     | -                           | +           | +          | 1            | -          | 1          | -         |
| pMAClux-3ΔtolC | -            | -           | 1             | -          | -    | 1   | -                    | -1                    | -                           | +           | -          | +            | +          | 1          | -         |
| pPHZlux        | -            | -           | +             | +          | -    | -   | -                    | -                     | -                           | -           | -          | -            | -          | +          | +         |

Model compound

High background at all concentrations



# Microbial reporter assay panel (anti-microbial) Not all reporters are sensitive enough: New reporter system



- Not clear if all 5 lux genes are expressed and translated at the same level
- No substrate present at operon induction -> response lag



### Microbial reporter assay panel (anti-microbial) splitting the CDABE-lux operon







## New vs old reporter system absolute induction and percentages





## Overview new reporter system some of the new reporters



### Microbial reporter assay panel (anti-microbial) Case studies: KWR medical waste and water samples

- Several samples from medical origin both pharma filtered and not
- Activity tested on Calux and Antimicrobial panel
- Antimicrobial activity on pre-pharma filtered but not in clean samples



### Microbial reporter assay panel (anti-microbial) Case studies: NIOO plant microbe interactions

- Plant samples treated with microbes
- Differential metabolites detected in treated samples
- Low activity (only oxydative stress) probably due to low extract concentrations



### MicroGLO bioassay panel To conclude...

 We have developed a fast and sensitive bioassay panel to measure antibiotics and/or novel antimicrobial compounds

• Effect based which means a broad range of compounds will be measured and cumulative effects can be determined