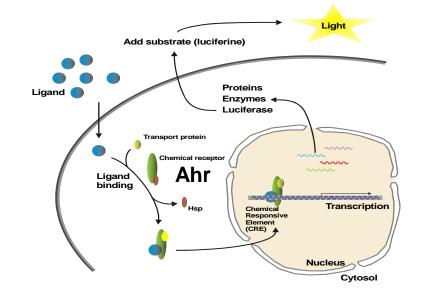


8th BioDetectors 2014 "DIOXINS/PCBs, ENDOCRINE DISRUPTERS (EDC), OBESOGENS AND EMERGING POLLUTANTS" *Turin, 26 september 2014*

DR-CALUX bioassay as screening method for the detection of contamination by dioxins in Piedmont region

Francesca Martucci, DVM

Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta


francesca.martucci@izsto.it www.izsto.it

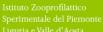
DR-CALUX in IZSTO since may 2011

Main activities:

✓ Research projects


 \checkmark Biomonitoring of risk areas

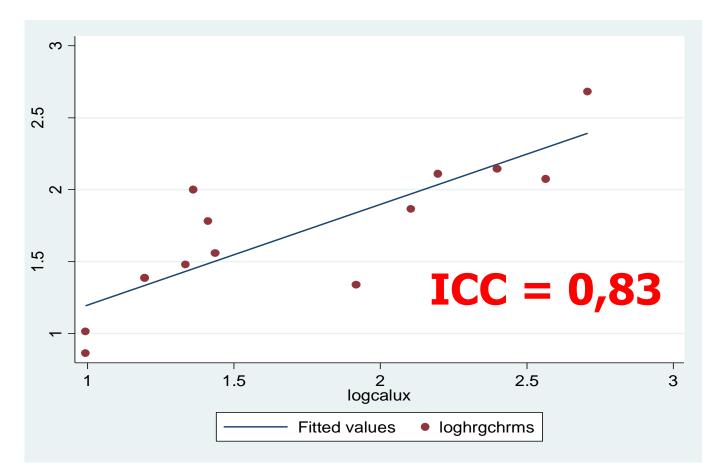
RESEARCH PROJECTS by DR CALUX (1) 2010/2011


"To analyze milk coming from Piedmont farms, by screening method for dioxin and PCBs detection "

Co-founding by IZSPLV + Fondazione CRT (Cassa di Risparmio di Torino);

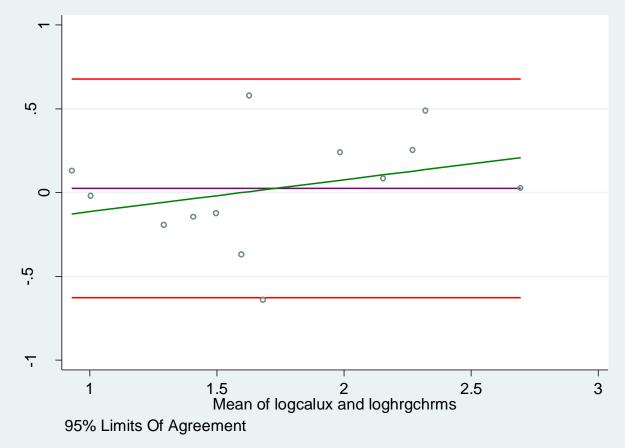
Aim of the **starting project**:

- 1) to evaluate the BDS DR CALUX[®] method as a screening tool for monitoring dioxin/PCBs in food, particularly in cow milk coming from Piedmont region;
- 2) to evaluate if this method is really applicable in our labs;
- 3) to evaluate the ICC value of the BDS DR CALUX[®] vs the HRGC/HRMS



	ID	RISULTATO HRGC/HRMS pg/g grasso	RISULTATO DR-CALUX® pg/g grasso	DEV. ST. (±) DR- CALUX®	
	6 – Val di Susa	8,5	11	0,31	
F	13– Val di Susa	2,7	2,7	0,11	
30 M	14– Val di Susa	4	3,3	0,18	IANT
	15 –Val di Susa	7,4	3,9	0,077	
	20– Val di Susa	3,8	6,8	0,22	
	21– Val di Susa	2,4	2,7	0,099	
	23– Val di Susa	7,9	13	0,77	
	31 –Val di Susa	14,61	15	0,46	
13		5,93	4,1	0,21	EDMONT
REGI	40– Val di Susa	4,75	4,2	0,38	
	41 –Val di Susa	6,45	8,2	0,23	
	46– Val di Susa	8,26	9	0,65	
	52– Val di Susa	4,39	3,8	0,17	
		Sauze di Cesana			

Scatter plot of the logarithm values obtained by Calux versus the ones obtained by HRGC/HRMS, In comparison with the fitted values

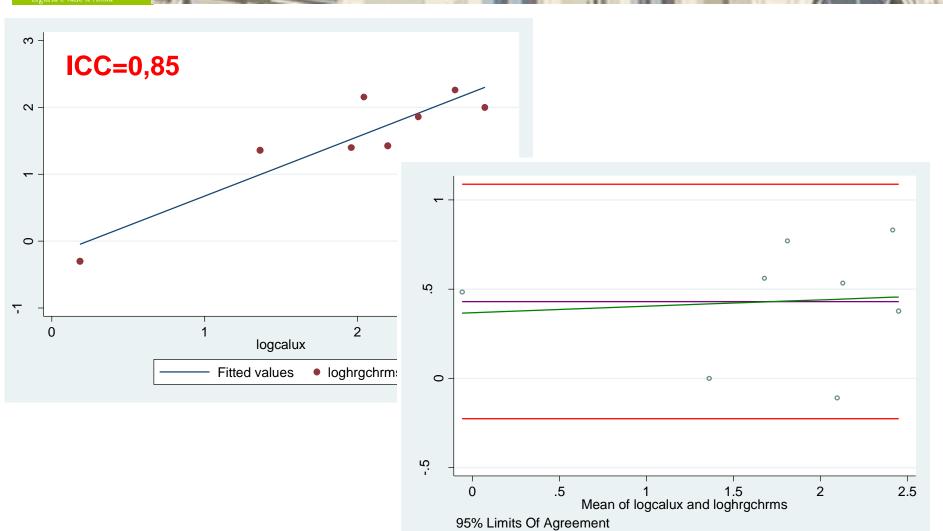


SS Biostatistica Epidemiologia Analisi del Rischio

Bland Altman plot of milk log values:

it represents differences for coupled values in comparison with a mean value Violet line: the ideal condition in which the variance between the two groups is similar Green line: the regression line from the data

SS Biostatistica Epidemiologia Analisi del Rischio



... and the eggs?

ID	HRGC/HRMS sum PCDD/F+dl- PCB	DR-CALUX [®] sum PCDD/F+dl-PCB	Dev. st. DR- CALUX®
U7	62	27	0,14
U8	3,9	3,9	0,25
U9	8,6	7,7	0,23
U10	6,45	11	1,40
U12	9,6	14	0,53
U13	4,17	9	0,10
U14	4,05	7,09	0,09
U15	7,4	17	0,21
U16	0,74	1,2	0,09

Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta

SS Biostatistica Epidemiologia Analisi del Rischio

OBSERVED VARIABILITY

mainly depends by the variance between the subjects (milk or egg samples), but not by the variance into the subjects

> There is no significant difference between the methods affecting the obtained values of the analyzed samples

Infraclass Correlation Coefficient (ICC)

shows a good agreement between the Calux and HRGC/HRMS values

Anyways, due to the particular characteristics of the examined samples (mostly dl-PCB)

we should to:

- 1) Evaluate the results once divided by group of contaminants (PCDD/F and dl-PCB) florisil columns
- 2) Re-test the method increasing the Nr. of the samples especially with compliant samples
- 3) Re-evaluate the data on BEQ basis (since Reg UE 252/2012 21/03/2012)

RESEARCH PROJECTS by DR CALUX (2) 2011/2014

"To develop screening biomolecular techniques for the detection of the dioxin and dioxin like contaminants exposure in cows"

Founding: European/Regional Founding Program (POR-FESR 2007-2013)

Matrices examined by DR-CALUX: **bovine blood serum**; bovine milk

- 1. IRTA S. r.l.

3 SMI _ 2. Università di Torino – Dip. di Patologia Animale

3. Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta (IZSPLVA)

2 OR 4. Usseglio Nanot Paolo

5. CORI S.r.l.

Aim of the project:

To develop a screening system alternative to the official ones, cheaper and faster

HUMAN BLOOD SERUM by DR CALUX

Environmental Health

BioMed Central

Talanta 85 (2011) 2484-2491

AhR transcriptional activity in serum of Inuits across Greenlandic districts

Manhai Long¹, Bente Deutch² and Eva C Bonefeld-Jorgensen*1

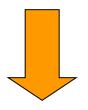
Published: 23 October 2007

Environmental Health 2007, 6:32 doi:10.1186/1476-069X-6-32

Quantification of PCDD/Fs and dioxin-like PCBs in small amounts of human serum using the sensitive H1L7.5c1 mouse hepatoma cell line: Optimization and analysis of human serum samples from adolescents of the Flemish human biomonitoring program FLEHS II

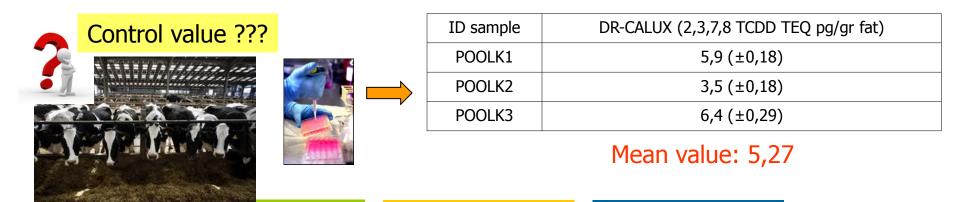
K. Croes^{a,h,*}, K. Van Langenhove^a, E. Den Hond^b, L. Bruckers^c, A. Colles^b, G. Koppen^b, I. Loots^d, V. Nelen^e, G. Schoeters^b, T. Nawrot^{f,g}, N. Van Larebeke^h, M.S. Denisonⁱ, T. Vandermarken^a,

M Elekoned W/ Docuoned


Ta	ıЫ	c	6

Reference	Country	Period	Population	N	Calculation	Unit	Value	Method
This study	Flanders	2008-2009	Students (14-15 years old), general population	173	GM (95%CI)	pgCALUX-BEQ/gfat	108 (101–114)	UDC-CALUX, H117.5c1 PCDD/F
	Flanders	2008-2009	Students (14-15 years old), general population	172	GM (95%CI)	pgCALUX-BEQ/gfat	32.1 (30.1–34.2)	UDC-CALUX H1L7.5c1, dl-PCB
Van Wouwe et al. [13]	Belgium	2000	Adults, men and women	341	GM	pg CALUX TEQ/g fat	41.8	XDS-CALUX, H1L6.1c2 PCDD/F
	Belgium	2000	Adults, men and women	341	CM	pg WHO-TEQ/g fat	257	GC-HRMS, PCDD/F
Long et al. [1]	Greenland	2002-2004	Adults, men	75	Median	pgCALUX TEQ/gfat	197	UCD-CALUX, Hepa1.12cR
	Poland	2002	Adults, men	99	Median	pgCALUX TEQ/gfat	312	UCD-CALUX, Hepa1.12cR
	Sweden	2002	Adults, men	78	Median	pg CALUX TEQ/g fat	428	UCD-CALUX, Hepa1.12cR
	Ukraine	2002	Adults, men	86	Median	pg CALUX TEQ/gfat	337	UCD-CALUX, Hepa1.12cR
Koppen et al. [22]	Flanders, Peer	1999	Adults, women, 50–65 years old	22	Mean (SD)	pg CALUX TEQ/g fat	37.2 (13.1)	BDS-CALUX, sum PCDD/F and dl-PCB
	Flanders, Antwerp	1999	Adults, women, 50-65 years old	25	Mean (SD)	pg CALUX TEQ/g fat	35.0 (16.5)	BDS-CALUX, sum PCDD/F and dl-PCB
	Flanders, Peer	1999	Adults, women, 50-65 years old	22	GM (95%CI)	pgWHO-TEQ/gfat	70.9 (65.3-76.9)	GC-HRMS, sum PCDD/F and dl-PCB
	Flanders, Antwerp	1999	Adults, women, 50-65 years old	25	GM (95%CI)	pgWHO-TEQ/gfat	78.9 (72.7-85.6)	GC-HRMS, sum PCDD/F and dl-PCB
Kayama et al. [23]	Japan	2002	Female farmers, 55,5 years old (average)	1407	Mean (SD)	pg CALUX TEQ/g fat	32.3 (12.1)	XDS-CALUX, PCDD/F
Todaka et al. [24]	Japan	2002-2005	Mothers	119	Mean (SD)	pg WHO-TEQ/g fat	11(4.2) PCDD/F 5.5 (2.5) dl-PCB	GC-HRMS
Wittsiepe et al. [25]	Germany	2000-2003	Pregnant women, 19–42 years old	169	Mean	pgWHO-TEQ/gfat	1679 PCDD/F11.57 dl-PCB	GC-HRMS
Burns et al. [26]	Russia	2003-2005	Children 8-9 years old	482	Median	pg WHO-TEQ/g fat	21.1	GC-HRMS
Ayotte et al. [27]	Canada	na	Adults, men and women, 25-75 years old	40	Median (min-max)	pg CALUX TEQ/g fat	102 (37-287)	BDS-CALUX, sum PCDD/F and dl-PCB
Warner et al. [9]	Italy	1999	Women, 20–49 years old	22	Mean (min-max)	pg CALUX TEQ/g fat	30.8 (1.6-67.3)	XDS-CALUX, PCDD/F

BOVINE BLOOD SERUM by DR CALUX



Pe-BDS-042

Number of Pages: 9

Shake solvent extraction and clean up with two grams of serum for DR CALUX[®] bioassay. 'The one shot approach'

BOVINE BLOOD SERUM by DR CALUX

Accident in St. Cyprien (FR)

Several cow contaminated

Decontamination by new feed

HRGC/MS in milk & blood sampling every 3 months

	ID sample	Pool of sera	DR-CALUX (2,3,7,8 TCDD TEQ pg/gr fat)
	C1	POOL 7067/7071 (A)	(10(±8,3)
To	C2	POOL 4950/8560 (A)	100 (±2,6) 105

1) decontamination of sera directly related to the time

2) but not always direct correlation between serum and milk

3) DR-Calux in serum possible approach for a non invasive evaluation in non lactacting animals

2			
	C11	8554 (C)	47 (±4,5)
	C12	8078 (C)	68 (±6,7)

RESEARCH PROJECTS by DR CALUX (3) 2013/2015

"Biodetector analysis of the level of dioxin contamination in lake wild and farmed fish species and evaluation of the possible effects on the immune system"

2013 Co- founding: by IZSPLV + Fondazione CRT (Cassa di Risparmio di Torino);

3 Piedmont lakes / supposed different level of contamination / 2 different species *P. fluviatilis* and *R. rutilus* (different level of food chain)

Several aquaculture farms / supposed different level of contamination / T.iridea

SS Genetica e immunobiochimica – Calux analyses SS Ittiopatologia – fishing and necropsies on fish University of Udine –analyses on fish immune system SS BEAR – biostatistical analyses

BIO – MONITORING 2012-2014

1) BIC A Analyzed and e

> 2) BI Analyze AIMS

> > 3) E

Analyzed

)I STURA [nterest bovine milk ;;IN -> AIM:

> PLANT ne area -> operational

RISIO

the range of

Statistical analysis of the data in progress

Istituto Zooprofilattico Sperimentale del Piemonte

Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta

Acknowledgements

SC Neuroscienze SS Genetica e Immunobiochimica Pier Luigi Acutis Maria Mazza Simona Sciuto Luana Dell'Atti

SC Controllo chimico ambientale SS Laboratorio contaminanti ambientali Maria Cesarina Abete Stefania Squadrone Riccardo Nespoli

SC Epidemiologia e Osservatorio epidemiologico SS BEAR Giuseppe Ru Rosanna Desiato

SS Ittiopatologia

Marino Prearo

Istituto Zooprofilattico Sperimentale del Piemont Liguria e Valle d'Aosta

