

Monitoring of Dutch waters by CALUX panel

Sander van der Linden Biodetection Systems

- Compounds are present as a complex mixture that can influence biological pathways
- Some compounds can do this at relatively low concentrations
- We cannot determine all compounds chemically
- and if we could we would most of the time not know their biological effect(s)

Bioanalysis of endocrine disruptors

- Equals estrogens in many cases
- Screening projects (e.g. LOES)

Chemical analysis

- TIE in combination with assays
- Natural hormones, synthetic hormones, industrial chemicals, pesticides

What classes of compounds can be expected?

Pharmaceuticals

 potent compounds, biological activity intended for humans/animals, low concentration?

Pesticides

 Biological activity intended for plants/insect/mammals, nonhuman targets, possibly potent compounds

Personal Care Products

Activity non-intended, low potency

Excretion products

- (Degradation products of) natural ligands, possibly potent

Industrial chemicals

High volume, low potency?, biological activity generally not intended

Bioassay monitoring - present

Screen for activity on multiple pathways

- Adverse outcome pathways (Ankley et al (2010), NRC, Tox21)

But how many pathways?

- Focus on endocrine disruption, reproductive toxicity, genotoxicity

Which pathways should be monitored?

Which assays are available?

- Nucleur receptors
 - DR, PAH, ER(a,β), AR, PR, GR, TRβ, RAR, PPAR(a, γ), LXR
- Signaling pathways
 - NFκB, Nrf2, TCF, ESRE, AP-1, p21, p53, Hif1a

Expand panel with additional pathways

• P53

- marker for genotoxic stress
- with and without metablic activation

• Nrf2

involved in oxidative stress response

PPARgamma

- involved in cellular differentation and metabolism
- part of PPARgamma receptor family (under development)
- And additional assays....

Which types of activity are detected?

How to incorporate bioassays in monitoring?

To use bioassay results for screening, trigger values are needed!

Trigger values

- > more detailed examination warrented
- < health risks can be waived

- Bioassay results indicative for total amount of active compounds...
- ...but compound identity is unknown!

Point of departure for trigger values

- Provisional Acceptable or Tolerable Daily Intake (ADI/TDI) of reference compound (WHO/JECFA)
- Pharmacokinetic factors for bioavailability reference compound
- "Worst-case" assumptions pharmacokinetic factors other compounds
- WHO body weight (60 kg), volume drinking water (2L)
- WHO allocation factor for drinking water (20%)

How to derive trigger values?

Trigger value for estrogens (as example)

ADI estradiol (E2)	50 ng/kg bw/d <i>(WHO/JECFA)</i>
Oral bioavailability	5%
Free fraction	2%
Available concentration	50 x 0.05 x 0.02 = 0.05 ng/kw/bw
External equivalent dose	0.05 / 0.50 / 0.50 = 0.2 ng E2-eq/kg bw/d
Trigger value	0.2 x 60 kg bw / 2 L x 20% = 1.2 ng E2-eq/L

With the help of....

Bart van der Burg Harrie Besselink Barbara Lusenburg Snezana Zeljkovic Bram Brouwer **KWR** Watercycle Research Institute

Merijn Schriks Water Brand Minne Heringa

Thank you for your attention!